

ИП Заренкова Юлия Викторовна

ИНН 220991035520, Российская Федерация 644007, г. Омск, ул. Октябрьская, д. 159, пом. 21П тел. (3812) 34-94-22, e-mail : tehnoskaner@bk.ru www.tehnoskaner.ru

«РАЗРАБОТАНО»		«УТВЕРЖДАЮ»		
Индивидуальный предприниматель		Глава Администрации Кетовского муниципального округа Курганской области		
	_Заренкова Ю. В.		Язовских О. Н.	
« »	2024 г.	« <u> </u> »	2024 г.	

Альбом № 10

Схема теплоснабжения (актуализированная схема теплоснабжения) сельского населенного пункта с. Колташево Кетовского муниципального округа Курганской области

№ TO-27-CT.345-24

СОДЕРЖАНИЕ

Введение	
СХЕМА ТЕПЛОСНАБЖЕНИЯ	4
Раздел 1. Показатели существующего и перспективного спроса на тепловую энергию	
(мощность) и теплоноситель в установленных границах территории поселения, городского	
округа, города федерального значения	4
1.1 Величины существующей отапливаемой площади строительных фондов и приросты	
отапливаемой площади строительных фондов по расчетным элементам территориального	
деления с разделением объектов строительства на многоквартирные дома, индивидуальные	
жилые дома, общественные здания и производственные здания промышленных предприятий	
по этапам – на каждый год первого 5-летнего периода и на последующие 5-летние периоды 1	4
1.2 Существующие и перспективные объемы потребления тепловой энергии (мощности) и	
теплоносителя с разделением по видам теплопотребления в каждом расчетном элементе	,
территориального деления на каждом этапе	0
1.3 Существующие и перспективные объемы потребления тепловой энергии (мощности) и	0
теплоносителя объектами, расположенными в производственных зонах, на каждом этапе 1	8
1.4 Существующие и перспективные величины средневзвешенной плотности тепловой	
нагрузки в каждом расчетном элементе территориального деления, зоне действия каждого	O
источника тепловой энергии, каждой системе теплоснабжения и по поселению	ð
Раздел 2. Перспективные балансы располагаемой тепловой мощности источников тепловой	0
энергии и тепловой нагрузки потребителей 1	9
2.1 Описание существующих и перспективных зон действия систем теплоснабжения и источников тепловой энергии	0
источников тепловой энергии	フ
тепловой энергии	a
2.3 Существующие и перспективные балансы тепловой мощности и тепловой нагрузки	,
потребителей в зонах действия источников тепловой энергии, в том числе работающих на	
единую тепловую сеть, на каждом этапе	n
2.4 Перспективные балансы тепловой мощности источников тепловой энергии и тепловой	
нагрузки потребителей в случае, если зона действия источника тепловой энергии	
расположена в границах двух или более поселений, городских округов либо в границах	
городского округа (поселения) и города федерального значения или городских округов	
(поселений) и города федерального значения, с указанием величины тепловой нагрузки для	
потребителей каждого поселения, городского округа, города федерального значения	:4
2.5 Радиус эффективного теплоснабжения, позволяющий определить условия, при которых	
подключение (технологическое присоединение) теплопотребляющих установок к системе	
теплоснабжения нецелесообразно, определяемый в соответствии с методическими	
указаниями по разработке схем теплоснабжения2	:5
Раздел 3. Существующие и перспективные балансы теплоносителя	
3.1 Существующие и перспективные балансы производительности водоподготовительных	
установок и максимального потребления теплоносителя теплопотребляющими установками	
потребителей	6
3.2 Существующие и перспективные балансы производительности водоподготовительных	
установок источников тепловой энергии для компенсации потерь теплоносителя в аварийных	ζ.
режимах работы систем теплоснабжения	6
Раздел 4. Основные положения мастер-плана развития систем теплоснабжения поселения 2	7
4.1 Описание сценариев развития теплоснабжения поселения	27
4.2 Обоснование выбора приоритетного сценария развития теплоснабжения поселения 2	7
Раздел 5. Предложения по строительству, реконструкции и техническому перевооружению и	
(или) модернизации источников тепловой энергии	8

	5.1 Предложения по строительству источников тепловой энергии, обеспечивающих перспективную тепловую нагрузку на осваиваемых территориях поселения, городского округа, для которых отсутствует возможность и (или) целесообразность передачи тепловой энергии от существующих или реконструируемых источников тепловой энергии, обоснованная расчетами ценовых (тарифных) последствий для потребителей (в ценовых зонах теплоснабжения - обоснованная расчетами ценовых (тарифных) последствий для потребителей, если реализацию товаров в сфере теплоснабжения с использованием такого источника тепловой энергии планируется осуществлять по регулируемым ценам (тарифам), и (или) обоснованная анализом индикаторов развития системы теплоснабжения поселения, городского округа, города федерального значения, если реализация товаров в сфере теплоснабжения с использованием такого источника тепловой энергии будет осуществляться по ценам, определяемым по соглашению сторон договора поставки тепловой энергии (мощности) и (или) теплоносителя) и радиуса эффективного теплоснабжения
	5.4 Графики совместной работы источников тепловой энергии, функционирующих в режиме
	комбинированной выработки электрической и тепловой энергии и котельных, меры по выводу из эксплуатации, консервации и демонтажу избыточных источников тепловой энергии, а также источников тепловой энергии, выработавших нормативный срок службы, в случае, если продление срока службы технически невозможно или экономически
	нецелесообразно
	нецелесообразно
	функционирующие в режиме комбинированной выработки электрической и тепловой энергии
	5.7 Меры по переводу котельных, размещенных в существующих и расширяемых зонах действия источников тепловой энергии, функционирующие в режиме комбинированной выработки электрической и тепловой энергии, в пиковый режим работы, либо по выводу их из эксплуатации
	5.8 Температурный график отпуска тепловой энергии для каждого источника тепловой энергии или группы источников тепловой энергии в системе теплоснабжения, работающей на общую тепловую сеть и оценку затрат при необходимости его изменения
	5.9 Предложения по перспективной установленной тепловой мощности каждого источника тепловой энергии с предложениями по сроку ввода в эксплуатацию новых мощностей 31 5.10 Предложения по вводу новых и реконструкции существующих источников тепловой энергии с использованием возобновляемых источников энергии, а также местных видов
P	топлива
	6.1 Предложения по строительству, реконструкции и (или) модернизации тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом располагаемой тепловой мощности источников тепловой энергии в зоны с резервом располагаемой тепловой мощности источников тепловой энергии (использование существующих резервов)
	под жилищную, комплексную или производственную застройку
	σ

6.3 Предложения по строительству, реконструкции и (или) модернизации тепловых сетей в	
целях обеспечения условий, при наличии которых существует возможность поставок	
тепловой энергии потребителям от различных источников тепловой энергии при сохранении	1
надежности теплоснабжения	
6.4 Предложения по строительству, реконструкции и (или) модернизации тепловых сетей дл	
повышения эффективности функционирования системы теплоснабжения, в том числе за сче	
перевода котельных в пиковый режим работы или ликвидации котельных по основаниям,	•
указанным в подпункте "д" пункта 11 Постановления № 154	32
6.5 Предложения по строительству, реконструкции и (или) модернизации тепловых сетей дл	
обеспечения нормативной надежности теплоснабжения потребителей	
Раздел 7. Предложения по переводу открытых систем теплоснабжения (горячего	55
водоснабжения), отдельных участков таких систем на закрытые системы горячего	
водоснабжения	34
7.1 Предложения по переводу существующих открытых систем теплоснабжения (горячего	J +
водоснабжения), отдельных участков таких систем на закрытые системы горячего	
водоснабжения, для осуществления которого необходимо строительство индивидуальных и	
(или) центральных тепловых пунктов при наличии у потребителей внутридомовых систем	34
F	34
7.2 Предложения по переводу существующих открытых систем теплоснабжения (горячего	
водоснабжения), отдельных участков таких систем на закрытые системы горячего	
водоснабжения, для осуществления которого отсутствует необходимость строительства	
индивидуальных и (или) центральных тепловых пунктов по причине отсутствия у	2.4
потребителей внутридомовых систем горячего водоснабжения	
Раздел 8. Перспективные топливные балансы	35
8.1 Перспективные топливные балансы для каждого источника тепловой энергии по видам	٥.
основного, резервного и аварийного топлива на каждом этапе	35
8.2 Потребляемые источником тепловой энергии виды топлива, включая местные виды	
топлива, а также используемые возобновляемые источники энергии	
8.3 Виды топлива, их долю и значение низшей теплоты сгорания топлива, используемые для	
производства тепловой энергии по каждой системе теплоснабжения	36
8.4 Преобладающий в поселении вид топлива, определяемый по совокупности всех систем	
теплоснабжения, находящихся в соответствующем поселении	
8.5 Приоритетное направление развития топливного баланса поселения	
Раздел 9. Инвестиции в строительство, реконструкцию и техническое перевооружение и (или)	
модернизацию	37
9.1 Предложения по величине необходимых инвестиций в строительство, реконструкцию,	
техническое перевооружение и (или) модернизацию источников тепловой энергии на каждом	
этапе	37
9.2 Предложения по величине необходимых инвестиций в строительство, реконструкцию,	
техническое перевооружение и (или) модернизацию тепловых сетей, насосных станций и	
тепловых пунктов на каждом этапе	37
9.3 Предложения по величине необходимых инвестиций в строительство, реконструкцию,	
техническое перевооружение и (или) модернизацию в связи с изменениями температурного	
графика и гидравлического режима работы системы теплоснабжения на каждом этапе	37
9.4 Предложения по величине необходимых инвестиций для перевода открытой системы	
теплоснабжения (горячего водоснабжения), отдельных участков такой системы на закрытую)
систему горячего водоснабжения на каждом этапе	
9.5 Оценка эффективности инвестиций по отдельным предложениям	
9.6 Величина фактически осуществленных инвестиций в строительство, реконструкцию,	
техническое перевооружение и (или) модернизацию объектов теплоснабжения за базовый	
период и базовый период актуализации	38

Раздел 10. Решение о присвоении статуса единой теплоснабжающей организации	
организациям)	39
10.1 Решение о присвоении статуса теплоснабжающей организации (организациям)	39
10.2 Реестр зон деятельности единой теплоснабжающей организации (организаций)	39
10.3 Основания, в том числе критерии, в соответствии с которыми теплоснабжающая	
организации присвоен статус единой теплоснабжающей организацией	39
10.4 Информация о поданных теплоснабжающими организациями заявках на присвоени	ie
статуса единой теплоснабжающей организации	
10.5 Реестр систем теплоснабжения, содержащий перечень теплоснабжающих организа	
действующих в каждой системе теплоснабжения, расположенных в границах поселения	
городского округа, города федерального значения	
Раздел 11. Решения о распределении тепловой нагрузки между источниками тепловой энер	
Раздел 12. Решения по бесхозяйным тепловым сетям	
Раздел 13. Синхронизация схемы теплоснабжения со схемой газоснабжения и газификации	A
убъекта Российской Федерации и (или) поселения, схемой и программой развития	
лектроэнергетических систем России, а также со схемой водоснабжения и водоотведения	
оселения, городского округа, города федерального значения	42
13.1 Описание решений (на основе утвержденной региональной (межрегиональной)	
программы газификации жилищно-коммунального хозяйства, промышленных и иных	
организаций) о развитии соответствующей системы газоснабжения в части обеспечения	
топливом источников тепловой энергии	
13.2 Описание проблем организации газоснабжения источников тепловой энергии	44
13.3 Предложения по корректировке утвержденной (разработке) региональной	
(межрегиональной) программы газификации жилищно-коммунального хозяйства,	
промышленных и иных организаций для обеспечения согласованности такой программы	ыс
указанными в схеме теплоснабжения решениями о развитии источников тепловой энерг	ии и
систем теплоснабжения	44
13.4 Описание решений (вырабатываемых с учетом положений утвержденных схемы и	
программы развития электроэнергетических систем России, а в период до утверждения схемы и программы в 2023 году (в отношении технологически изолированных	таких
территориальных электроэнергетических систем в 2024 году) - также утвержденных схе	емы и
программы развития Единой энергетической системы России, схемы и программы	1,121 11
перспективного развития электроэнергетики субъекта Российской Федерации, на террит	гории
которого расположена соответствующая технологически изолированная территориальна	-
электроэнергетическая система) по строительству, реконструкции, техническому	471
перевооружению и (или) модернизации, выводу из эксплуатации источников тепловой	
энергии и решений по реконструкции, техническому перевооружению, модернизации, н	re
связанных с увеличением установленной генерирующей мощности, и выводу из эксплуа	
генерирующих объектов, включая входящее в их состав оборудование, функционирующ	
режиме комбинированной выработки электрической и тепловой энергии, в части	цее в
перспективных балансов тепловой мощности в схемах теплоснабжения	11
13.5 Обоснованные предложения по строительству (реконструкции, связанной с увеличе	
установленной генерирующей мощности) генерирующих объектов, функционирующих	
режиме комбинированной выработки электрической и тепловой энергии, для обеспечен	
покрытия перспективных тепловых нагрузок для их рассмотрения при разработке схемь	чи
программы развития электроэнергетических систем России, а также при разработке	
(актуализации) генеральной схемы размещения объектов электроэнергетики - при налич	
таких предложений по результатам технико-экономического сравнения вариантов покры	
перспективных тепловых нагрузок	45
13.6 Описание решений (вырабатываемых с учетом положений утвержденной схемы	
водоснабжения поселения, городского округа, города федерального значения) о развити	М
5	

соответствующей системы водоснабжения в части, относящейся к системам тепло	
13.7 Предложения по корректировке утвержденной (разработке) схемы водоснабж	
поселения, городского округа, города федерального значения для обеспечения	
согласованности такой схемы и указанных в схеме теплоснабжения решений о раз	витии
источников тепловой энергии и систем теплоснабжения	
Раздел 14. Индикаторы развития систем теплоснабжения поселения	
Раздел 15. Ценовые (тарифные) последствия	
Раздел 16. Меры по обеспечению надежности теплоснабжения и бесперебойной рабо	
теплоснабжения	
16.1 Аварийные ситуации в системах отопления зданий	
16.2 Неисправности элементов теплового ввода	50
16.3 Аварийные ситуации в тепловых сетях	
16.4 Возможные способы оперативной локализации и устранения аварийных ситуа	
системах теплоснабжения и отопления	
16.5 Потенциальные угрозы в системах теплоснабжения	53
ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ	54
ГЛАВА 1. Существующее положение в сфере производства, передачи и потребления	
энергии для целей теплоснабжения	
Часть 1. Функциональная структура теплоснабжения	54
Часть 2. Источники тепловой энергии	55
Часть 3. Тепловые сети, сооружения на них и тепловые пункты	59
Часть 4. Зоны действия источников тепловой энергии	
Часть 5. Тепловые нагрузки потребителей тепловой энергии, групп потребителей т	
энергии в зонах действия источников тепловой энергии	
Часть 6. Балансы тепловой мощности и тепловой нагрузки в зонах действия источ	
тепловой энергии	
Часть 7. Балансы теплоносителя	
Часть 8. Топливные балансы источников тепловой энергии и система обеспечения	
Часть 9. Надежность теплоснабжения	
Часть 10. Технико-экономические показатели теплоснабжающих и теплосетевых с	
	80
Часть 11. Цены (тарифы) в сфере теплоснабжения	
Часть 12. Описание существующих технических и технологических проблем в сис	
теплоснабжения поселения	84
ГЛАВА 2. Существующие и перспективные потребление тепловой энергии на цели	
теплоснабжения	
2.1 Данные базового уровня потребления тепла на цели теплоснабжения	
2.2 Прогнозы приростов площади строительных фондов, сгруппированные по расч	
элементам территориального деления и по зонам действия источников тепловой э	
разделением объектов строительства на многоквартирные дома, жилые дома, общо	
здания и производственные здания промышленных предприятий, на каждом этапе	
2.3 Прогнозы перспективных удельных расходов тепловой энергии на отопление,	
и горячее водоснабжение, согласованных с требованиями к энергетической эффек	
объектов теплопотребления, устанавливаемых в соответствии с законодательством	
Российской Федерации	
2.4 Прогнозы приростов объемов потребления тепловой энергии (мощности) и теп	
с разделением по видам теплопотребления в каждом расчетном элементе территор	
деления и в зоне действия каждого из существующих или предлагаемых для строи	
источников тепловой энергии на каждом этапе	88

е разделением по видам теплоногребления в расчетных элементах территориального деления и в зонах действия индивидуального теплоснабжения на каждом этапе		2.5 Прогнозы приростов объемов потребления тепловой энергии (мощности) и теплоносителя
и в зопах действия индивидуального теплоснабжения на каждом этапе		с разделением по видам теплопотребления в расчетных элементах территориального деления
2.6 Прогнозы приростов объемов потребления тепловой энергии (мопности) и теплоносителя объектами, расположенными в производственных зонах, с учетом возможных изменений производственных зон их перепрофилирования и приростов объемов потребления тепловой энергии (мопности) производственными объектами с разделением по видам теплопотребления и по видам теплопосителя (горячая вода и пар) в зоне действия каждого из существующих или предлагаемых для строительства источников тепловой энергии на каждом этапе		
объектами, расположенными в производственных зонах, с учетом возможных изменений производственных зон и их перепрофилироващия и приростов объемов потребления тепловой эпертии (мощпости) производственными объектами с раздълением по видам теплопогребления и по видам теплоносителя (горячая вода и пар) в зоне действия каждого из существующих или предлагаемых для строительства источников тепловой эпертии на каждом этапе		· ·
производственных зоп и их перспрофилирования и приростов объемов потребления тепловой эпертии (мощности) производственными объектами е разделением по видам теплоноготебления и по видам теплоносителя (горячая вода и пар) в зопе действия каждого из существующих или предлагаемых для строительства источников тепловой энергии на каждом этапе		
энергии (мощности) производственными объектами с разделением по видам теплопотребления и по видам теплоносителя (горячая вода и пар) в зоне действия каждого из существующих или предлагаемых для строительства источников тепловой энергии на каждом этапе		· · · · · · · · · · · · · · · · · · ·
теплопотребления и по видам теплоносителя (горячая вода и пар) в зоне действия каждого из существующих или предлагаемых для строительства источников тепловой энергии на каждом зтапс		
еуществующих или предлагаемых для строительства источников тепловой энергии на каждом этапе		
этапс		
ГЛАВА 3. Электронная модель системы теплоснабжения поселения		
ГЛАВА 4. Перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки потребителей	Г	
4.1 Балапсы существующей па базовый период схемы теплоспабжения (актуализации схемы теплоспабжения) гепловой мощности и перепективной тепловой нагрузки в каждой из зоп действия источников тепловой энергии с определением резервов (дефицитов) существующей располагаемой тепловой энергии с определением резервов (дефицитов) существующей располагаемой тепловой энергии с оточников тепловой энергии, устанавливаемых на основании величины расчетной тепловой нагрузки, а в ценовых зонах теплоснабжения - балансы существующей на базовый период схемы теплоснабжения (актуализации схемы теплоснабжения) тепловой мощности и перспективной тепловой нагрузки в каждой системе теплоснабжения с указанием сведений о значениях существующей и перспективной тепловой мощности источников тепловой энергии, находящихся в государственной или муниципальной собственности и являющихся объектами концессионных соглашений или договоров аренды. — 91 4.2 Гидравлический расчет передачи теплоносителя для каждого магистрального вывода с целью определения возможности (невозможности) обеспечения тепловой энергией существующих и перепективных потребителей, присоединенных к тепловой энергией существующих и перепективных потребителей, присоединенных к тепловой энергией существующих и перепективной тепловой нагрузки потребителей — 91 4.3 Выводы о резервах (дефицитах) существующей системы теплоснабжения при обеспечении перспективной тепловой нагрузки потребителей — 92 ГЛАВА 5. Мастер-план развития систем теплоснабжения при обеспечении перспективной тепловой нагрузки потребителей — 93 5.1 Описание вариантов (пе менее двух) перспективного развития систем теплоснабжения поселения, городского округа, города федерального значения отпосительно ранее принятого варианта развития систем теплоснабжения поселения, городского округа, города федерального значения на основе анализа ценовых (тарифных) последствий для потребителей, возникших при осуществлении регулируемых видов деятельности, и индикаторов развития систем теплоснабжения - на основе анализа ценовых		
4.1 Балансы существующей на базовый период схемы теплоенабжения (актуализации схемы теплоснабжения) тепловой мощности и перспективной тепловой нагрузки в каждой из зон действия источников тепловой мощности источников тепловой энергии, устанавливаемых на осповании величины расчетной тепловой пагрузки, а в ценовых зонах теплоснабжения - балансы существующей на базовый период схемы теплоснабжения (актуализации схемы теплоснабжения) тепловой мощности и перепсктивной тепловой пагрузки в каждой системе теплоснабжения с указанием сведений о значениях существующей и перспективной тепловой мощности источников тепловой энергии, находящихся в государственной или муниципальной собственности и являющихся объектами концессионных соглашений или договоров аренды. ————————————————————————————————————		
теплоснабжения) тепловой мощности и перспективной тепловой нагрузки в каждой из зон действия источников тепловой энергии с определением резервов (дефицитов) существующей располагаемой тепловой энергии с определением резервов (дефицитов) существующей располагаемой тепловой мощности и сточников тепловой энергии, устанавливаемых на основании величины расчетной тепловой нагрузки, а в ценовых зонах теплоснабжения - балансы существующей на базовый период схемы теплоснабжения (актуализации схемы теплоснабжения) тепловой мощности и перспективной тепловой нагрузки в каждой системе теплоснабжения у суказанием сведений о значениях существующей и перспективной тепловой мощности источников тепловой энергии, находящихся в государственной или муниципальной собственности и являющихся объектами концессионных соглашений или договоров аренды	T	1 / 1
действия источников тепловой энергии с определением резервов (дефицитов) существующей располагаемой тепловой мощности источников тепловой энергии, устанавливаемых на основании величины расчетной тепловой нагрузки, а в ценовых зонах теплоснабжения - балансы существующей на базовый период схемы теплоснабжения (актуализации схемы теплоснабжения) тепловой мощности и перспективной тепловой нагрузки в каждой системе теплоснабжения с указанием сведений о значениях существующей и перспективной тепловой мощности источников тепловой энергии, находящихся в государственной или муниципальной собственности и являющихся объектами концессионных соглашений или договоров аренды		
располагаемой тепловой мощности источников тепловой энергии, устанавливаемых на основании величины расчетной тепловой нагрузки, а в ценовых зонах теплоснабжения - балансы существующей на базовый период схемы теплоснабжения (актуализации схемы теплоснабжения) тепловой мощности и перспективной тепловой нагрузки в каждой системе теплоснабжения с указанием сведений о значениях существующей и перспективной тепловой мощности источников тепловой энергии, находящихся в государственной или муниципальной собственности и являющихся объектами концессионных соглашений или договоров аренды		
основании величины расчетной тепловой нагрузки, а в ценовых зонах теплоснабжения - балансы существующей на базовый период схемы теплоснабжения (актуализации схемы теплоснабжения) тепловой мощности и перспективной тепловой нагрузки в каждой системе теплоснабжения с указанием сведений о значениях существующей и перспективной тепловой мощности источников тепловой энергии, находящихся в государственной или муниципальной собственности и являющихся объектами концессионных соглашений или договоров аренды		
балансы существующей на базовый период схемы теплоснабжения (актуализации схемы теплоснабжения) тепловой мощности и перспективной тепловой нагрузки в каждой системе теплоснабжения с указанием сведений о значениях существующей и перспективной тепловой мощности источников тепловой энергии, находящихся в государственной или муниципальной собственности и являющихся объектами концессионных соглашений или договоров аренды		
теплоснабжения) тепловой мощности и перспективной тепловой нагрузки в каждой системе теплоснабжения с указанием сведений о значениях существующей и перспективной тепловой мощности источников тепловой энергии, находящихся в государственной или муниципальной собственности и являющихся объектами концессионных соглашений или договоров аренды		основании величины расчетной тепловой нагрузки, а в ценовых зонах теплоснабжения -
теплоснабжения с указанием сведений о значениях существующей и перспективной тепловой мощности источников тепловой энергии, находящихся в государственной или муниципальной собственности и являющихся объектами концессионных соглащений или договоров аренды		балансы существующей на базовый период схемы теплоснабжения (актуализации схемы
мощности источников тепловой энергии, находящихся в государственной или муниципальной собственности и являющихся объектами концессионных соглашений или договоров ареиды		теплоснабжения) тепловой мощности и перспективной тепловой нагрузки в каждой системе
муниципальной собственности и являющихся объектами концессионных соглашений или договоров аренды		теплоснабжения с указанием сведений о значениях существующей и перспективной тепловой
муниципальной собственности и являющихся объектами концессионных соглашений или договоров аренды		мощности источников тепловой энергии, находящихся в государственной или
договоров аренды		
4.2 Гидравлический расчет передачи теплоносителя для каждого магистрального вывода с целью определения возможности (невозможности) обеспечения тепловой энергией существующих и перспективных потребителей, присоединенных к тепловой сети от каждого источника тепловой энергии		
целью определения возможности (невозможности) обеспечения тепловой энергией существующих и перспективных потребителей, присоединенных к тепловой сети от каждого источника тепловой энергии		* *
существующих и перспективных потребителей, присоединенных к тепловой сети от каждого источника тепловой энергии		
4.3 Выводы о резервах (дефицитах) существующей системы теплоснабжения при обеспечении перспективной тепловой нагрузки потребителей		1
4.3 Выводы о резервах (дефицитах) существующей системы теплоснабжения при обеспечении перспективной тепловой нагрузки потребителей		
обеспечении перспективной тепловой нагрузки потребителей		1
ГЛАВА 5. Мастер-план развития систем теплоснабжения поселения, городского округа, города федерального значения		
федерального значения	Г	
5.1 Описание вариантов (не менее двух) перспективного развития систем теплоснабжения поселения, городского округа, города федерального значения (в случае их изменения относительно ранее принятого варианта развития систем теплоснабжения в утвержденной в установленном порядке схеме теплоснабжения)		
поселения, городского округа, города федерального значения (в случае их изменения относительно ранее принятого варианта развития систем теплоснабжения в утвержденной в установленном порядке схеме теплоснабжения)	Ψ	
относительно ранее принятого варианта развития систем теплоснабжения в утвержденной в установленном порядке схеме теплоснабжения)		
установленном порядке схеме теплоснабжения)		
5.2 Технико-экономическое сравнение вариантов перспективного развития систем теплоснабжения поселения		
теплоснабжения поселения		
5.3 Обоснование выбора приоритетного варианта перспективного развития систем теплоснабжения поселения, городского округа, города федерального значения на основе анализа ценовых (тарифных) последствий для потребителей, а в ценовых зонах теплоснабжения - на основе анализа ценовых (тарифных) последствий для потребителей, возникших при осуществлении регулируемых видов деятельности, и индикаторов развития систем теплоснабжения поселения, городского округа, города федерального значения		
теплоснабжения поселения, городского округа, города федерального значения на основе анализа ценовых (тарифных) последствий для потребителей, а в ценовых зонах теплоснабжения - на основе анализа ценовых (тарифных) последствий для потребителей, возникших при осуществлении регулируемых видов деятельности, и индикаторов развития систем теплоснабжения поселения, городского округа, города федерального значения		
анализа ценовых (тарифных) последствий для потребителей, а в ценовых зонах теплоснабжения - на основе анализа ценовых (тарифных) последствий для потребителей, возникших при осуществлении регулируемых видов деятельности, и индикаторов развития систем теплоснабжения поселения, городского округа, города федерального значения 94 ГЛАВА 6. Существующие и перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей, в том числе в аварийных режимах 96 6.1 Расчетная величина нормативных потерь (в ценовых зонах теплоснабжения - расчетную величину плановых потерь, определяемых в соответствии с методическими указаниями по разработке схем теплоснабжения) теплоносителя в тепловых сетях в зонах действия		
теплоснабжения - на основе анализа ценовых (тарифных) последствий для потребителей, возникших при осуществлении регулируемых видов деятельности, и индикаторов развития систем теплоснабжения поселения, городского округа, города федерального значения 94 ГЛАВА 6. Существующие и перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей, в том числе в аварийных режимах 96 6.1 Расчетная величина нормативных потерь (в ценовых зонах теплоснабжения - расчетную величину плановых потерь, определяемых в соответствии с методическими указаниями по разработке схем теплоснабжения) теплоносителя в тепловых сетях в зонах действия		
возникших при осуществлении регулируемых видов деятельности, и индикаторов развития систем теплоснабжения поселения, городского округа, города федерального значения 94 ГЛАВА 6. Существующие и перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей, в том числе в аварийных режимах 96 6.1 Расчетная величина нормативных потерь (в ценовых зонах теплоснабжения - расчетную величину плановых потерь, определяемых в соответствии с методическими указаниями по разработке схем теплоснабжения) теплоносителя в тепловых сетях в зонах действия		
систем теплоснабжения поселения, городского округа, города федерального значения 94 ГЛАВА 6. Существующие и перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей, в том числе в аварийных режимах 96 6.1 Расчетная величина нормативных потерь (в ценовых зонах теплоснабжения - расчетную величину плановых потерь, определяемых в соответствии с методическими указаниями по разработке схем теплоснабжения) теплоносителя в тепловых сетях в зонах действия		` • • · · · · · · · · · · · • · · · · ·
ГЛАВА 6. Существующие и перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей, в том числе в аварийных режимах		
водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей, в том числе в аварийных режимах		
теплопотребляющими установками потребителей, в том числе в аварийных режимах	Γ.	ЛАВА 6. Существующие и перспективные балансы производительности
6.1 Расчетная величина нормативных потерь (в ценовых зонах теплоснабжения - расчетную величину плановых потерь, определяемых в соответствии с методическими указаниями по разработке схем теплоснабжения) теплоносителя в тепловых сетях в зонах действия	В	одоподготовительных установок и максимального потребления теплоносителя
6.1 Расчетная величина нормативных потерь (в ценовых зонах теплоснабжения - расчетную величину плановых потерь, определяемых в соответствии с методическими указаниями по разработке схем теплоснабжения) теплоносителя в тепловых сетях в зонах действия	Τŧ	еплопотребляющими установками потребителей, в том числе в аварийных режимах 96
величину плановых потерь, определяемых в соответствии с методическими указаниями по разработке схем теплоснабжения) теплоносителя в тепловых сетях в зонах действия		
разработке схем теплоснабжения) теплоносителя в тепловых сетях в зонах действия		
		источников тепловой энергии96

6.2 Максимальный и среднечасовой расход теплоносителя (расход сетевой воды)	на горячее
водоснабжение потребителей с использованием открытой системы теплоснабжен	ия в зоне
действия каждого источника тепловой энергии, рассчитываемый с учетом прогно	-
перевода потребителей, подключенных к открытой системе теплоснабжения (горг	ячего
водоснабжения), отдельным участкам такой системы, на закрытую систему горяч	его
водоснабжения	97
6.3 Сведения о наличии баков-аккумуляторов	97
6.4 Нормативный и фактический (для эксплуатационного и аварийного режимов)	часовой
расход подпиточной воды в зоне действия источников тепловой энергии	
6.5 Существующий и перспективный баланс производительности водоподготовит	
установок и потерь теплоносителя с учетом развития системы теплоснабжения	
ГЛАВА 7. Предложения по строительству, реконструкции, техническому перевоору	
(или) модернизации источников тепловой энергии	
7.1. Описание условий организации централизованного теплоснабжения, индивид	
теплоснабжения, а также поквартирного отопления, которое должно содержать в	•
определение целесообразности или нецелесообразности подключения (технологи	
присоединения) теплопотребляющей установки к существующей системе централ	
теплоснабжения исходя из недопущения увеличения совокупных расходов в тако	
централизованного теплоснабжения, расчет которых выполняется в порядке, уста	
методическими указаниями по разработке схем теплоснабжения	
7.2. Описание текущей ситуации, связанной с ранее принятыми в соответствии с	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
законодательством Российской Федерации об электроэнергетике решениями об о	тнесении
генерирующих объектов к генерирующим объектам, мощность которых поставля	
вынужденном режиме в целях обеспечения надежного теплоснабжения потребите	
7.3. Анализ надежности и качества теплоснабжения для случаев отнесения генери	
объекта к объектам, вывод которых из эксплуатации может привести к нарушени	
надежности теплоснабжения (при отнесении такого генерирующего объекта к объекта к	
электрическая мощность которых поставляется в вынужденном режиме в целях о	
надежного теплоснабжения потребителей, в соответствующем году долгосрочног	
конкурентного отбора мощности на оптовом рынке электрической энергии (мощн	
соответствующий период), в соответствии с методическими указаниями по разраб	
теплоснабжения	
7.4. Обоснование предлагаемых для строительства источников тепловой энергии,	
функционирующих в режиме комбинированной выработки электрической и тепловогование предлагаемых для строительства источников теплового энергии,	
энергии, для обеспечения перспективных тепловых нагрузок, выполненное в поря	
установленном методическими указаниями по разработке схем теплоснабжения	
7.5. Обоснование предлагаемых для реконструкции и (или) модернизации действу	
источников тепловой энергии, функционирующих в режиме комбинированной вы	
электрической и тепловой энергии, для обеспечения перспективных приростов те	
нагрузок, выполненное в порядке, установленном методическими указаниями по	
схем теплоснабжения.	
7.6 Обоснование предложений по переоборудованию котельных в источники тепл	
энергии, функционирующие в режиме комбинированной выработки электрическо	
тепловой энергии, с выработкой электроэнергии на собственные нужды теплосна	
организации в отношении источника тепловой энергии, на базе существующих и	
перспективных тепловых нагрузок	
7.7 Обоснование предлагаемых для реконструкции и (или) модернизации котельн	
увеличением зоны их действия путем включения в нее зон действия существующ	
источников тепловой энергии	101
7.8. Обоснование предлагаемых для перевода в пиковый режим работы котельных	
отношению к источникам тепловой энергии, функционирующим в режиме комби	
выработки электрической и тепловой энергии	101

	7.9 Обоснование предложений по расширению зон действия действующих источников
	тепловой энергии, функционирующих в режиме комбинированной выработки электрической
	и тепловой энергии
	7.10. Обоснование предлагаемых для вывода в резерв и (или) вывода из эксплуатации
	котельных при передаче тепловых нагрузок на другие источники тепловой энергии 101
	7.11. Обоснование организации индивидуального теплоснабжения в зонах застройки
	поселения малоэтажными жилыми зданиями
	7.12. Обоснование перспективных балансов производства и потребления тепловой мощности
	источников тепловой энергии и теплоносителя и присоединенной тепловой нагрузки в
	каждой из систем теплоснабжения поселения
	7.13 Анализ целесообразности ввода новых и реконструкции и (или) модернизации
	существующих источников тепловой энергии с использованием возобновляемых источников
	энергии, а также местных видов топлива
	7.14 Обоснование организации теплоснабжения в производственных зонах на территории
	поселения
	7.15 Результаты расчетов радиусов эффективного теплоснабжения
Γ.	ЛАВА 8. Предложения по строительству, реконструкции и (или) модернизации тепловых сетей
	сооружений на них
	8.1. Предложения по реконструкции и (или) модернизации, строительству тепловых сетей,
	обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом тепловой
	мощности в зоны с избытком тепловой мощности (использование существующих резервов)
	8.2. Предложения по строительству тепловых сетей для обеспечения перспективных
	приростов тепловой нагрузки под жилищную, комплексную или производственную застройку
	во вновь осваиваемых районах поселения
	8.3. Предложения по строительству тепловых сетей, обеспечивающих условия, при наличии
	которых существует возможность поставок тепловой энергии потребителям от различных
	источников тепловой энергии при сохранении надежности теплоснабжения
	8.4. Предложения по строительству, реконструкции и (или) модернизации тепловых сетей для
	повышения эффективности функционирования системы теплоснабжения, в том числе за счет
	перевода котельных в пиковый режим работы или ликвидации котельных
	8.5. Предложения по строительству тепловых сетей для обеспечения нормативной
	надежности теплоснабжения
	8.6. Предложения по реконструкции и (или) модернизации тепловых сетей с увеличением
	диаметра трубопроводов для обеспечения перспективных приростов тепловой нагрузки 104
	8.7. Предложения по реконструкции и (или) модернизации тепловых сетей, подлежащих
	замене в связи с исчерпанием эксплуатационного ресурса
	8.8. Предложения по строительству, реконструкции и (или) модернизации насосных станций
Г	ЛАВА 9. Предложения по переводу открытых систем теплоснабжения (горячего
	одоснабжения), отдельных участков таких систем на закрытые системы горячего
	одоснабжения
	9.1. Технико-экономическое обоснование предложений по типам присоединений
	теплопотребляющих установок потребителей (или присоединений абонентских вводов) к
	тепловым сетям, обеспечивающим перевод потребителей, подключенных к открытой системе
	теплоснабжения (горячего водоснабжения), отдельным участкам такой системы, на закрытую
	систему горячего водоснабжения
	9.2. Обоснование и пересмотр графика температур теплоносителя и его расхода в открытой
	системе теплоснабжения (горячего водоснабжения)
	9.3. Предложения по реконструкции тепловых сетей в открытых системах теплоснабжения
	(горячего водоснабжения), на отдельных участках таких систем, обеспечивающих передачу
	тепловой энергии к потребителям
	1011/10100 PT OF THE R. HOTPOORTOJIMI

9.4. Расчет потребности инвестиций для перевода открытых систем теплоснабжения (горячель)	ГО
водоснабжения), отдельных участков таких систем на закрытые системы горячего	
водоснабжения	05
9.5. Оценка экономической эффективности мероприятий по переводу открытых систем	
теплоснабжения (горячего водоснабжения), отдельных участков таких систем на закрытые	
системы горячего водоснабжения	06
9.6. Расчет ценовых (тарифных) последствий для потребителей в случае реализации	
мероприятий по переводу открытых систем теплоснабжения (горячего водоснабжения),	
отдельных участков таких систем на закрытые системы горячего водоснабжения 10	06
ЛАВА 10. Перспективные топливные балансы	07
10.1 Расчеты по каждому источнику тепловой энергии перспективных максимальных часовь	ΙX
и годовых расходов основного вида топлива для зимнего, летнего и переходного периодов,	
необходимого для обеспечения нормативного функционирования источников тепловой	
энергии на территории поселения, городского округа	07
10.2 Расчеты по каждому источнику тепловой энергии нормативных запасов аварийных видо	
топлива	
10.3 Вид топлива, потребляемый источником тепловой энергии, в том числе с	01
использованием возобновляемых источников энергии и местных видов топлива	07
10.4 Виды топлива, их доля и значение низшей теплоты сгорания топлива, используемые для	
производства тепловой энергии по каждой системе теплоснабжения	
10.5 Преобладающий в поселении вид топлива, определяемый по совокупности всех систем	
теплоснабжения, находящихся в соответствующем поселении	
10.6 Приоритетное направление развития топливного баланса поселения	
ЛАВА 9. Оценка надежности теплоснабжения	
11.1 Метод и результаты обработки данных по отказам участков тепловых сетей (аварийным	1
ситуациям), средней частоты отказов участков тепловых сетей (аварийных ситуаций) в	
каждой системе теплоснабжения	09
11.2 Метод и результаты обработки данных по восстановлениям отказавших участков	
тепловых сетей (участков тепловых сетей, на которых произошли аварийные ситуации),	
среднего времени восстановления отказавших участков тепловых сетей в каждой системе	
теплоснабжения	11
11.3 Результаты оценки вероятности отказа (аварийной ситуации) и безотказной	
(безаварийной) работы системы теплоснабжения по отношению к потребителям,	
присоединенным к магистральным и распределительным теплопроводам	11
11.4 Результаты оценки коэффициентов готовности теплопроводов к несению тепловой	
нагрузки	12
11.5 Результатов оценки недоотпуска тепловой энергии по причине отказов (аварийных	
ситуаций) и простоев тепловых сетей и источников тепловой энергии	13
11.6 Предложения, обеспечивающие надежность систем теплоснабжения	
11.7 Сценарии развития аварий в системах теплоснабжения с моделированием	
гидравлических режимов работы таких систем	15
ЛАВА 12. Обоснование инвестиций в строительство, реконструкцию, техническое	13
еревооружение и (или) модернизацию	20
12.1 Оценка финансовых потребностей для осуществления строительства, реконструкции,	20
технического перевооружения и (или) модернизации источников тепловой энергии и	20
тепловых сетей	ΔU
12.2 Обоснованные предложения по источникам инвестиций, обеспечивающих финансовые	
потребности для осуществления строительства, реконструкции и технического	20
перевооружения источников тепловой энергии и тепловых сетей	
12.3 Расчеты экономической эффективности инвестиций	2 I

12.4 Расчеты ценовых (тарифных) последствий для потребителей при реализации программ	
строительства, реконструкции, технического перевооружения и (или) модернизации систем	
теплоснабжения	21
ГЛАВА 13. Индикаторы развития систем теплоснабжения поселения, городского округа, город	(a
федерального значения	
ГЛАВА 14. Ценовые (тарифные) последствия	24
14.1 Тарифно-балансовые расчетные модели теплоснабжения потребителей по каждой	
системе теплоснабжения	
14.2 Тарифно-балансовые расчетные модели теплоснабжения потребителей по каждой едино	ıй
теплоснабжающей организации	25
14.3 Результаты оценки ценовых (тарифных) последствий реализации проектов схемы	
теплоснабжения на основании разработанных тарифно-балансовых моделей 12	
ГЛАВА 15. Реестр единых теплоснабжающих организаций	27
15.1 Реестр систем теплоснабжения, содержащий перечень теплоснабжающих организаций,	
действующих в каждой системе теплоснабжения, расположенных в границах поселения,	
городского округа, города федерального значения	27
15.2 Реестр единых теплоснабжающих организаций, содержащий перечень систем	
теплоснабжения, входящих в состав единой теплоснабжающей организации 12	27
15.3 Основания, в том числе критерии, в соответствии с которыми теплоснабжающей	
организации присвоен статус единой теплоснабжающей организации	27
15.4 Заявки теплоснабжающих организаций, поданные в рамках разработки проекта схемы	
теплоснабжения (при их наличии), на присвоение статуса единой теплоснабжающей	
организации	
15.5 Описание границ зон деятельности единой теплоснабжающей организации (организаций	
ГЛАВА 16. Реестр мероприятий схемы теплоснабжения	29
16.1 Перечень мероприятий по строительству, реконструкции или техническому	
перевооружению и (или) модернизации источников тепловой энергии	29
16.2 Перечень мероприятий по строительству, реконструкции и техническому	
перевооружению тепловых сетей и сооружений на них	
16.3 Перечень мероприятий, обеспечивающих перевод от открытых систем теплоснабжения	
(горячего водоснабжения), отдельных участков таких систем на закрытые системы горячего	
водоснабжения	
ГЛАВА 17. Замечания и предложения к проекту схемы теплоснабжения	
17.1 Перечень всех замечаний и предложений, поступивших при разработке, утверждении и	
актуализации схемы теплоснабжения	
17.2 Ответы разработчиков проекта схемы теплоснабжения на замечания и предложения 13	30
17.3 Перечень учтенных замечаний и предложений, а также реестр изменений, внесенных в	
разделы схемы теплоснабжения и главы обосновывающих материалов к схеме	
теплоснабжения	
ГЛАВА 18. Сводный том изменений, выполненных в доработанной и (или) актуализированной	
схеме теплоснабжения	
Приложение. Схемы теплоснабжения	34

Введение

Пояснительная записка составлена в соответствии с постановлением Правительства Российской Федерации от 22 февраля 2012 г. № 154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения», Федеральным законом № 190-ФЗ от 27 июля 2010 г. «О теплоснабжении», постановлением Правительства Российской Федерации от 8 августа 2012 г. № 808 «Правила организации теплоснабжения в Российской Федерации», постановлением Правительства РФ от 8 августа 2012 г. № 808 «Об организации теплоснабжения в Российской Федерации и о внесении изменений в некоторые акты Правительства Российской Федерации» (вместе с «Правилами организации теплоснабжения в Российской Федерации»), актуализированными редакциями СНиП 41-02-2003 «Тепловые сети» и СНиП II-35-76 «Котельные установки», методическими указаниями по расчету уровня и порядку определения показателей надёжности и качества поставляемых товаров и оказываемых услуг для организаций, осуществляющих деятельность по производству и (или) передаче тепловой энергии, приказом Федеральной службы по тарифам № 760-э «Об утверждении методических указаний по расчету регулируемых цен (тарифов) в сфере теплоснабжения» от 13.06.2013 г., МДС 41-6.2000 «Организационно-методическими рекомендациями по подготовке к проведению отопительного периода и повышению надежности систем коммунального теплоснабжения в городах и населенных пунктах Российской Федерации» от 06.09.2000, с учетом приказа Минэнерго России № 565 и Методическими указаниями по разработке схем теплоснабжения, утвержденными приказом Минэнерго России № 212 от 5 марта 2019 г.

Целью разработки схемы теплоснабжения (актуализированной схемы теплоснабжения) является удовлетворение спроса на тепловую энергию (мощность) и теплоноситель, обеспечение надежного теплоснабжения наиболее экономичным способом при минимальном воздействии на окружающую среду, экономическое стимулирование развития систем теплоснабжения и внедрения энергосберегающих технологий, улучшение работы систем теплоснабжения.

Основой для разработки схемы теплоснабжения сельского населенного пункта с. Колташево до 2043 года являются:

- Схема теплоснабжения Колташевского сельсовета Кетовского муниципального района Курганской области (№ ТО-143.СТ-072-14);
- Схема водоснабжения и водоотведения Колташевского сельсовета Кетовского района Курганской области (№ ТО-142.CB-139-14);
- Стратегия социально-экономического развития муниципального образования Кетовский район до 2030 года;
- Государственная программа Курганской области «Энергосбережение и повышение энергетической эффективности в Курганской области», реализуемая в течение 2021 2025 годов;
- Государственная программа Курганской области «Комплексное развитие сельских территорий Курганской области», реализуемая в течение 2020 2025 годов;
- Муниципальная программа Кетовского района «Комплексное развитие сельских территорий Кетовского района», реализуемая в течение 2020 2025 годов;
 - Генеральная схема газоснабжения и газификации Курганской области;
 - региональная программа газификации Курганской области на 2021 2030 годы.

При разработке схемы теплоснабжения использовались:

- паспорт муниципального образования Колташевский сельсовет Кетовского района Курганской области;

- документы территориального планирования, карты градостроительного зонирования, публичные кадастровые карты и др.;
- технический паспорт, свидетельство о государственной регистрации права на объекты теплоснабжения;
- данные о техническом состоянии источника тепловой энергии и тепловых сетей, сведения о режимах потребления и уровне потерь тепловой энергии, схемы теплотрассы котельной, предоставленных теплоснабжающей организацией ООО «Уют».

СХЕМА ТЕПЛОСНАБЖЕНИЯ

Раздел 1. Показатели существующего и перспективного спроса на тепловую энергию (мощность) и теплоноситель в установленных границах территории поселения, городского округа, города федерального значения

К перспективному спросу на тепловую мощность и тепловую энергию для теплоснабжения относятся потребности всех объектов капитального строительства в тепловой мощности и тепловой энергии на цели отопления, вентиляции, горячего водоснабжения и технологические нужды.

Открытые схемы теплоснабжения на территории сельсовета отсутствуют.

Единственным используемым видом теплоносителя является вода, теплоноситель в виде водяного пара не используется.

1.1 Величины существующей отапливаемой площади строительных фондов и приросты отапливаемой площади строительных фондов по расчетным элементам территориального деления с разделением объектов строительства на многоквартирные дома, индивидуальные жилые дома, общественные здания и производственные здания промышленных предприятий по этапам — на каждый год первого 5-летнего периода и на последующие 5-летние периоды

Согласно схеме паспорту муниципального образования Колташевский сельсовет обеспеченность населения общей площадью на 2013 г. составляет 15,9 м^2 /чел., общий жилищный фонд составляет 38 тыс. м^2 .

Ориентиром для определения перспективной обеспеченности населения жильем являются показатели, определенные Распоряжением Правительства Курганской области от 02.12.2008 г. №488-р «О стратегии социально-экономического развития Курганской области до 2020 г.» — к 2030 г. обеспеченность населения жилищным фондом планируется на уровне 32,5 м². Наряду с новым жилищным строительством предусмотрено замещение ветхого и аварийного фонда новым.

К общественным зданиям сельского населенного пункта с. Колташево, составляющим соответственно общественный фонд, относятся сельсовет, отделение Сбербанка, РО Поместная церковь, МДОУ «Колташевский детский сад», филиал почты России, Колташевская СОШ, два ДК, три библиотеки, четыре фельдшерско-акушерских пункта (ФАП). Сфера торговли и бытовых услуги представлена десятью магазинами общей площадью 357,7 м², сфера общественного питания представлена одним придорожным кафе.

В производственных зонах сельсовета производственные здания промышленных предприятий отсутствуют.

Площади существующих и перспективных строительных фондов в расчетном элементе территориального деления — зоне действия центральной котельной (ул. Камшилова д.1в) с. Колташево, расположенной в кадастровом квартале 45:08:012901, приведены в таблице 1.2.

Таблица 1.1 – Список потребителей централизованного теплоснабжения

No	Адрес	Площадь,	Высота	Объем зда-	Наименование (жилой дом,	Тепловая
п.п		\mathbf{M}^2	здания,	ния, м ³	многоквартирный дом,	нагрузка на
			M		магазин, дет.сад, школа,	отопление,
					гараж и т.д.)	Гкал/час
1	ул. Почтовая 21	-	ı	10122,46	школа	489,26
2	ул. Почтовая 23	-	1	3574,80	Детский сад	198,76
3	ул. Пушкина,д.20	-		1129,38	Административное зда-	79,14
					ние	
4	ул.Камшилова,д.1б	-	-	2074,88	Дом культуры	133,72

Таблица 1.2 – Площадь строительных фондов и приросты площади строительных фондов в расчетном элементе с источником теплоснабжения – центральной котельной с. Колташево

Потом элементе с н						ах фондо			
Показатель	Существующая			-	Персп	ективная	I		
Год	2023	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039- 2043
	K	адастро	вый квар	тал 45:0	08:01290	1			
многоквартирные дома (сохраняе-мая площадь), м ²	0	0	0	0	0	0	0	0	0
многоквартирные дома (прирост), м ²	0	0	0	0	0	0	0	0	0
жилые дома (со- храняемая пло- щадь), м ²	0	0	0	0	0	0	0	0	0
жилые дома (при- рост), м ²	0	0	0	0	0	0	0	0	0
общественные здания (сохраняе-мая площадь), м ²	3030	3030	3030	3030	3030	3030	3030	3030	3030
общественные здания (прирост), м ²	0	0	0	0	0	0	0	0	0
производственные здания промыш-ленных предприятий (сохраняемая площадь), м ²	0	0	0	0	0	0	0	0	0
производственные здания промыш- ленных предприя- тий (прирост), м ²	0	0	0	0	0	0	0	0	0
всего строитель- ного фонда, м ²	3030	3030	3030	3030	3030	3030	3030	3030	3030

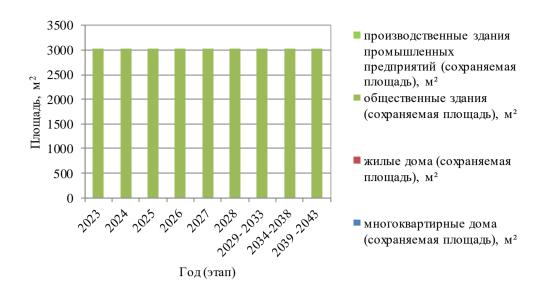


Рисунок 1.1 – Площади строительных фондов в расчетном элементе с источником теплоснабжения – центральной котельной с. Колташево

1.2 Существующие и перспективные объемы потребления тепловой энергии (мощности) и теплоносителя с разделением по видам теплопотребления в каждом расчетном элементе территориального деления на каждом этапе

Объемы потребления тепловой энергии (мощности), теплоносителя в расчетном элементе — зоне действия центральной котельной с. Колташево — приведены в таблице 1.3.

Таблица 1.3 – Объемы потребления тепловой энергии (мощности), теплоносителя в расчетном элементе с источником теплоснабжения центральной котельной с. Колташево

Потреблени	Год	2023	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039- 2043
Tio ip contin		Кадастр	овые ква	арталы 45	5:08:0214	01 и 45:0	08:02140		2020	20.5
	отопление	847,14	847,14	847,14	847,14	847,14	847,1 4	847,1 4	847,1 4	847,14
	прирост нагрузки на отопление	0	0	0	0	0	0	0	0	0
	ГВС	0	0	0	0	0	0	0	0	0
Тепловая энергия, Гкал/год	прирост нагрузки на ГВС	0	0	0	0	0	0	0	0	0
	вентиля- ция	0	0	0	0	0	0	0	0	0
	прирост нагрузки на вентиля- цию	0	0	0	0	0	0	0	0	0
Тепловая	отопление	0,325	0,325	0,325	0,325	0,325	0,325	0,325	0,325	0,325
мошность.	прирост нагрузки на отопление	0	0	0	0	0	0	0	0	0

Потреблен	Год	2023	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039- 2043
1	ГВС	0	0	0	0	0	0	0	0	0
	прирост нагрузки на ГВС	0	0	0	0	0	0	0	0	0
	вентиля- ция	0	0	0	0	0	0	0	0	0
	прирост нагрузки на вентиля- цию	0	0	0	0	0	0	0	0	0
	отопление	0,061	0,061	0,061	0,061	0,061	0,061	0,061	0,061	0,061
	прирост нагрузки на отопление	0	0	0	0	0	0	0	0	0
	ГВС	0	0	0	0	0	0	0	0	0
Теплоно- ситель, м3/ч	прирост нагрузки на ГВС	0	0	0	0	0	0	0	0	0
M3/4	вентиля- ция	0	0	0	0	0	0	0	0	0
	прирост нагрузки на вентиля- цию	0	0	0	0	0	0	0	0	0

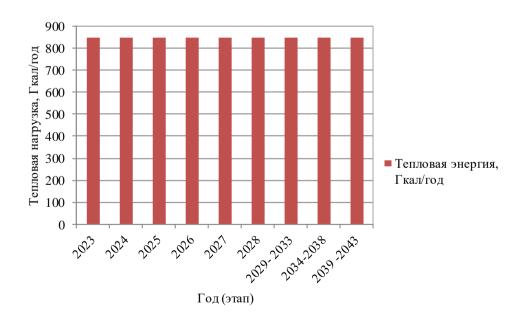


Рисунок 1.2 – Объемы потребления тепловой энергии (мощности) централизованной котельной на территории с. Колташево

1.3 Существующие и перспективные объемы потребления тепловой энергии (мощности) и теплоносителя объектами, расположенными в производственных зонах, на каждом этапе

Объекты потребления тепловой энергии (мощности) и теплоносителя в производственных зонах на территории сельского населенного пункта с. Колташево отсутствуют. Изменение производственных зон и их перепрофилирование не предусматривается. Приросты потребления тепловой энергии (мощности), теплоносителя производственными объектами отсутствуют.

1.4 Существующие и перспективные величины средневзвешенной плотности тепловой нагрузки в каждом расчетном элементе территориального деления, зоне действия каждого источника тепловой энергии, каждой системе теплоснабжения и по поселению

Согласно Постановлению Правительства Российской Федерации от 22 февраля 2012 г. № 154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения» средневзвешенная плотность тепловой нагрузки — отношение тепловой нагрузки потребителей тепловой энергии к площади территории, на которой располагаются объекты потребления тепловой энергии указанных потребителей, определяемое для каждого расчетного элемента территориального деления, зоны действия каждого источника тепловой энергии, каждой системы теплоснабжения и в целом по поселению, городскому округу, городу федерального значения в соответствии с методическими указаниями по разработке схем теплоснабжения.

Средневзвешенная плотность тепловой нагрузки приведена в таблице 1.4.

Таблица 1.4 — Средневзвешенная плотность тепловой нагрузки потребителей тепловой энергии централизованных источников теплоснабжения сельского населенного пункта с. Колташево

Зона действия	Сред	цневзвеше	невзвешенная плотность тепловой нагрузки потребителей, Гкал/м ²									
источника тепло-	Сущест-		Перспективная									
снабжения (рас-	вующая	Перспективная										
четный элемент			2024 2025 2026 2027 2029 2029- 2034- 2039									
территориального	2023	2024	2025	2026	2027	2028	2023	2034	2043			
деления)							2033	2030	2043			
Котельная	3,799	3,799	3,799	3,799	3,799	3,799	3,799	3,799	3,799			
с. Колташево	3,177	3,177	3,177	3,177	3,177	3,177	3,177	3,177	3,177			

Раздел 2. Перспективные балансы располагаемой тепловой мощности источников тепловой энергии и тепловой нагрузки потребителей

2.1 Описание существующих и перспективных зон действия систем теплоснабжения и источников тепловой энергии

Зона действия системы теплоснабжения центральной котельной расположенной по адресу ул. Камшилова д.1в, с. Колташево охватывает территорию, являющуюся частью кадастрового квартала 45:08:012901, расположенную между ул. Пушкина и ул. Почтовая, ул. Камшилова и ул. Комсомольская. К системе теплоснабжения подключены здания дома культуры, школы, детского сада и сельсовета. Наиболее удаленный потребитель — ДК. Зона действия источника тепловой энергии — центральной котельной — совпадает с зоной действия системы теплоснабжения.

В перспективе зона действия центральной котельной остается неизменной на расчетный период до 2043 г.

Соотношение общей площади и площадей охвата зон действия с централизованными источниками тепловой энергии приведено в таблице 1.5.

Таблица 1.5 – Соотношение общей площади и площади охвата зоны действия с системами централизованного теплоснабжения (СЦТ)

Населенный пункт	Источник теплоснабжения	Площадь зоны*, Га	Площадь зоны СЦТ, %
с. Колташево	Центральная котельная	2,23	1,69
с. Колташево	Индивидуальные	129,60	0,00
Всего	_	134,83	1,69

^{*-} примечание – по данным спутниковых карт

Соотношение площадей охвата системами теплоснабжения территории с. Колташево приведено на рисунке 1.3.

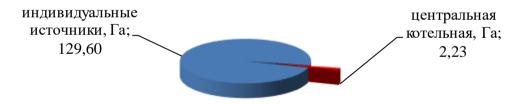


Рисунок 1.3 – Соотношение площади площадей охвата системами теплоснабжения с. Колташево

2.2 Описание существующих и перспективных зон действия индивидуальных источников тепловой энергии

К существующим зонам действия индивидуальных источников тепловой энергии относятся большая часть территории с. Колташево с индивидуальной жилой застройкой.

Перспективные территории вышеуказанных зон действия с индивидуальными источниками тепловой энергии остаются неизменными на весь расчетный период до 2043 г.

Таблица 1.6 – Соотношение общей площади и площади охвата зоны действия с индивидуальными источниками тепловой энергии

Населенный пункт	Площадь зо- ны*, Га	Площадь зоны индивидуального теплоснабжения, Га	Доля зоны индивидуального теплоснабжения, %
с. Колташево	131,83	129,60	98,3

^{*-} примечание – по данным спутниковых карт

2.3.1 Существующие и перспективные значения установленной тепловой мощности основного оборудования источника (источников) тепловой энергии

Согласно постановлению Правительства Российской Федерации от 22 февраля 2012 г. №154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения», установленная мощность источника тепловой энергии — сумма номинальных тепловых мощностей всего принятого по акту ввода в эксплуатацию оборудования, предназначенного для отпуска тепловой энергии потребителям на собственные и хозяйственные нужды.

Существующие и перспективные значения установленной тепловой мощности центральной котельной с. Колташево приведены в таблице 1.7.

Таблица 1.7 – Существующие и перспективные значения установленной тепловой мощности источников тепловой энергии

Зона	Значения устан	овленной тепловой мощности основного оборудования источника, Гкал/ч										
действия источника	Существую- щая		Перспективная									
теплоснабжения	2023 г.	2024 г.	2024 г. 2025 г. 2026 г. 2027 г. 2028 г. 2029- 2034- 2039 г. 2043 г.									
Центральная котельная	0,516	0,516										

2.3.2 Существующие и перспективные технические ограничения на использование установленной тепловой мощности и значения располагаемой мощности основного оборудования источников тепловой энергии

Согласно постановлению Правительства Российской Федерации от 22 февраля 2012 г. №154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения», располагаемая мощность источника тепловой энергии — величина, равная установленной мощности источника тепловой энергии за вычетом объемов мощности, не реализуемой по техническим причинам, в том числе по причине снижения тепловой мощности оборудования в результате эксплуатации на продленном техническом ресурсе (снижение параметров пара перед турбиной, отсутствие рециркуляции в пиковых водогрейных котлоагрегатах и др.).

Существующие и перспективные технические ограничения на использование установленной тепловой мощности и значения располагаемой мощности основного оборудования центральной котельной с. Колташево приведены в таблице 1.8.

^{2.3} Существующие и перспективные балансы тепловой мощности и тепловой нагрузки потребителей в зонах действия источников тепловой энергии, в том числе работающих на единую тепловую сеть, на каждом этапе

Таблица 1.8 – Существующие и перспективные технические ограничения на использование установленной тепловой мощности и значения располагаемой мощности основного оборудования

Источник	Параметр	Сущест-				Перспе	ктивные	;		
тепло- снабжения	Год	2023 г.	2024 г.	2025 г.	2026 г.	2027 г.	2028 г.	2029- 2033	2034- 2038	2039 - 2043
								$\Gamma\Gamma$.	ΓГ.	ΓΓ.
Цен- тральная	Объемы мощности, нереализуемые по тех причинам, Гкал/ч	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026
котельная	Располагаемая мощ- ность, Гкал/ч	0,490	0,490	0,490	0,490	0,490	0,490	0,490	0,490	0,490

2.3.3 Существующие и перспективные затраты тепловой мощности на собственные и хозяйственные нужды теплоснабжающей организации в отношении источников тепловой энергии

Существующие и перспективные затраты тепловой мощности на собственные и хозяйственные нужды источника тепловой энергии – центральной котельной с. Колташево приведены в таблице 1.9.

Таблица 1.9 – Существующие и перспективные затраты тепловой мощности на собственные и хозяйственные нужлы источников тепловой энергии

	Затраты тепловой мощности на собственные и хозяйственные нужды источников											
Источник теп-	тепловой энергии, Гкал/ч											
лоснабжения	Существующая	Существующая Перспективная										
	2023 г.	2024 г.	2025 г.	2026 г.	2027 г.	2028 5	2029-	2034-	2039 -			
						20281.	2033 гг.	2038 гг.	2043 гг.			
Центральная котельная	0,008	0,008 0,008 0,008 0,008 0,008 0,008 0,008										

2.3.4 Значения существующей и перспективной тепловой мощности источников тепловой энергии нетто

Согласно постановлению Правительства Российской Федерации от 22 февраля 2012 г. №154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения», мощность источника тепловой энергии нетто — величина, равная располагаемой мощности источника тепловой энергии за вычетом тепловой нагрузки на собственные и хозяйственные нужды.

Существующие и перспективные тепловые мощности источников тепловой энергии нетто центральной котельной с. Колташево приведены в таблице 1.10.

Таблица 1.10 – Существующая и перспективная тепловая мощности источников тепловой энергии нетто

	Значение тепловой мощности источников тепловой энергии нетто, Гкал/ч										
Источник теп-	Существую- щая				Пер	спектив	ная				
лоснабжения	2023 г.	2024 г.	2025 г.	2026 г.	2027 г.	2028 г.	2029- 2033 гг.	2034- 2038 гг.	2039 - 2043 гг.		
Центральная котельная	0,482	0,482	0,482	0,482	0,482	0,482	0,482	0,482	0,482		

2.3.5 Значения существующих и перспективных потерь тепловой энергии при ее передаче по тепловым сетям, включая потери тепловой энергии в тепловых сетях теплопередачей через теплоизоляционные конструкции теплопроводов и потери теплоносителя, с указанием затрат теплоносителя на компенсацию этих потерь

Существующие и перспективные потери тепловой энергии при ее передаче по тепловым сетям центральной котельной с. Колташево приведены в таблице 1.11.

Таблица 1.11 – Существующие и перспективные потери тепловой энергии при ее передаче по тепловым сетям

Источник	Параметр	Суще- ствующие				Перспе	ктивные			
теплоснаб- жения	Год	2023 г.	2024 г.	2025 г.	2026 г.	2027 г.	2028 г.	2029- 2033 гг.	2034- 2038 гг.	2039 - 2043 гг.
	Потери тепловой энергии при её передаче по тепловым сетям, Гкал/ч	0,019	0,019	0,018	0,018	0,017	0,017	0,014	0,012	0,009
Цен- тральная котельная	Потери тепло- передачей че- рез теплоизо- ляционные конструкции теплопрово- дов, Гкал/ч	0,0190	0,018	0,018	0,017	0,017	0,016	0,014	0,011	0,009
	Потери тепло- носителя, Гкал/ч	0,00004	0,000 04	0,000 04	0,000 04	0,000 04	0,000 04	0,000 04	0,000 04	0,000 04

2.3.6 Затраты существующей и перспективной тепловой мощности на хозяйственные нужды теплоснабжающей (теплосетевой) организации в отношении тепловых сетей

Затраты существующей и перспективной тепловой мощности на хозяйственные нужды тепловых сетей центральной котельной с. Колташево приведены в таблице 1.12.

Таблица 1.12 – Затраты существующей и перспективной тепловой мощности на хозяйственные нужлы тепловых сетей

пужды тепловы	пужды тепловых сетен											
	Значение за	Значение затрат тепловой мощности на хозяйственные нужды тепловых сетей,										
			Гкал/ч Перспективная 2024 г. 2025 г. 2026 г. 2027 г. 2028 г. 2029- 2034- 2039 г. 2038 гг. 2043 гг.									
Источник теп- лоснабжения	Существую- щая											
	2023 г.	2024 г.										
Центральная котельная	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005			

2.3.7 Значения существующей и перспективной резервной тепловой мощности источников теплоснабжения, в том числе источников тепловой энергии, принадлежащих потребителям, и источников тепловой энергии теплоснабжающих организаций, с выделением аварийного резерва и резерва по договорам на поддержание резервной тепловой мощности

Согласно Федеральному закону от 27.07.2010 № 190-ФЗ «О теплоснабжении», резервная тепловая мощность - тепловая мощность источников тепловой энергии и тепловых сетей, необходимая для обеспечения тепловой нагрузки теплопотребляющих установок, входящих в систему теплоснабжения, но не потребляющих тепловой энергии, теплоносителя.

Значения существующей и перспективной резервной тепловой мощности источника теплоснабжения — центральной котельной с. Колташево приведены в таблице 1.13.

Таблица 1.13 — Существующая и перспективная резервная тепловая мощности источников теплоснабжения

	Значения суще	Значения существующей и перспективной резервной тепловой мощности источников теплоснабжения, Гкал/ч												
Источник теп- лоснабжения	Существую- щая		Перспективная											
	2023 г.	2024 г.	2025 г.	2026 г.	2027 г.	2028 г.	2029- 2033 гг.	2034- 2038 гг.	2039 - 2043 гг.					
Центральная котельная	0,133	0,133	0,134	0,134	0,135	0,135	0,138	0,140	0,143					

2.3.8 Значения существующей и перспективной тепловой нагрузки потребителей, устанавливаемые с учетом расчетной тепловой нагрузки

Значения существующей и перспективной тепловой нагрузки потребителей представлен в таблице 1.14.

Таблица 1.14 — Значения существующей и перспективной тепловой нагрузки потребителей, устанавливаемые по договорам теплоснабжения в с. Колташево

	Значения суг	Значения существующей и перспективной тепловой нагрузки потребителей, Гкал/год												
Источник теп- лоснабжения	Существую- щая	Перспективная												
	2023 г.	2024 г.	2025 г.	2026 г.	2027 г.	2028 г.	2029- 2033 гг.	2034- 2038 гг.	2039 - 2043 гг.					
Центральная	0,325	0,325	0,325	0,325	0,325	0,325	0,325	0,325	0,325					

котельная

2.4 Перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки потребителей в случае, если зона действия источника тепловой энергии расположена в границах двух или более поселений, городских округов либо в границах городского округа (поселения) и города федерального значения или городских округов (поселений) и города федерального значения, с указанием величины тепловой нагрузки для потребителей каждого поселения, городского округа, города федерального значения

Зоны действия существующих источников тепловой энергии расположены в границах населённого пункта с. Колташево.

Источники тепловой энергии с зоной действия, расположенной в границах двух или более поселений, городских округов либо в границах городского округа (поселения) и города федерального значения или городских округов (поселений) и города федерального значения, отсутствуют. До конца расчетного периода зоны действия существующих котельных останутся в пределах сельского населенного пункта с. Колташево.

Балансы тепловой мощности и тепловой нагрузки источников тепловой энергии сельского населенного пункта с. Колташево приведены на рисунке 1.4, энергии – на рисунке 1.5.

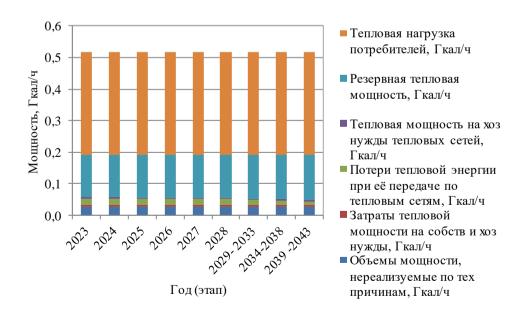


Рисунок 1.4 – Развернутый баланс тепловой мощности и тепловой нагрузки центральной котельной с. Колташево

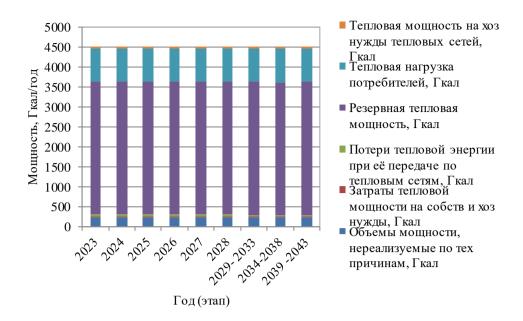


Рисунок 1.5 – Развернутый баланс тепловой энергии и тепловой нагрузки центральной котельной с. Колташево

2.5 Радиус эффективного теплоснабжения, позволяющий определить условия, при которых подключение (технологическое присоединение) теплопотребляющих установок к системе теплоснабжения нецелесообразно, определяемый в соответствии с методическими указаниями по разработке схем теплоснабжения

Радиус эффективного теплоснабжения источников тепловой энергии для зоны действия каждого источника тепловой энергии приведены в таблице 1.15.

Таблица 1.15 — Результаты расчета радиуса теплоснабжения центральной котельной Сельского населенного пункта с. Колташево

Теплоисточник	Центральная котельная
Оптимальный радиус теплоснабжения, км	3,26
Максимальный радиус теплоснабжения, км	0,71
Радиус эффективного теплоснабжения, км	3,22

Раздел 3. Существующие и перспективные балансы теплоносителя

3.1 Существующие и перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей

Перспективные балансы производительности водоподготовительной установки центральной котельной и максимального потребления теплоносителя представлен в таблицах 1.16. Потребление теплоносителя не осуществляется, так как система теплоснабжения в с. Колташево закрытая.

Таблица 1.16 – Перспективный баланс теплоносителя центральной котельной с. Колташево

Год Величина	2023	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039- 2043
производительность водоподготовительных установок, м ³ /ч	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
максимальное потребление теплоно- сителя теплопотребляющими уста- новками потребителей, м ³ /ч	0	0	0	0	0	0	0	0	0

3.2 Существующие и перспективные балансы производительности водоподготовительных установок источников тепловой энергии для компенсации потерь теплоносителя в аварийных режимах работы систем теплоснабжения

Перспективные балансы производительности водоподготовительной установки центральной котельной в аварийных режимах работы представлен в таблицах 1.17.

Таблица 1.17 – Перспективный баланс производительности водоподготовительной установки центральной котельной с. Колташево

Tpumbhen Refubblen C. Remainese									
Год Величина	2023	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039- 2043
производительность водоподготовительных установок в аварийных режимах работы, м ³ /ч	0,780	0,780	0,780	0,780	0,780	0,780	0,780	0,780	0,780

Раздел 4. Основные положения мастер-плана развития систем теплоснабжения поселения

4.1 Описание сценариев развития теплоснабжения поселения

Развитие теплоснабжения в сельском населенном пункте с. Колташево возможно по трем сценариям.

Первый. Существующая тенденция отключения двух- и одноквартирных жилых домов приведет к полному приводу частного сектора на индивидуальное отопление. Подводящие сети к таким домам будут выведены из эксплуатации. Значительного влияния на гидравлический режим работы системы теплоснабжения отключения не окажут, поскольку таких потребителей немного. Замена ветхих и аварийных теплосетей будет осуществляться по мере их выхода из строя с постепенным нарастанием случаев отказа и увеличением последствий. Такой сценарий не требует материальных затрат на ближайшие годы.

Второй. Сохранение существующей структуры потребления тепловой энергии, в том числе уже подключенными индивидуальными домами, с возможностью подключения новых потребителей. Обязательное сохранение теплоснабжения муниципальных потребителей. Для этого требуется увеличить ежегодный объем заметы ветхих и аварийных теплосетей.

Третий. Отказ от существующей централизованной системы теплоснабжения с поэтапным переводом наиболее удаленных потребителей на блочно-модульные котельные. Постепенные вывод из эксплуатации теплосетей от существующих котельных и сокращение их зоны действия. Поддержание работоспособности существующих теплосетей до их вывода из эксплуатации за счет своевременных ремонтов.

4.2 Обоснование выбора приоритетного сценария развития теплоснабжения поселения

Существующие центральные котельные имеют продолжительный срок эксплуатации. Строительство новых источников тепловой энергии не требуется в связи с низким спросом централизованного теплоснабжения среди населения.

Первый вариант содержит наибольшие риски по отказам в периоды отопления, массовым недоотпускам энергии и потерями тепловой энергии до реконструкции, требующей значительные капитальные вложения в сжатые сроки.

Второй вариант подразумевает сохранение существующей системы с равномерным распределением капитальных расходов, наименьшими рисками и обновлению системы теплоснабжения на расчетный период.

Третий вариант связан с полным отказом от централизованной системы, с капитальными вложениями на проектирование и сооружение новых индивидуальных котельных, содержанием еще не выведенных тепловых сетей существующих централизованных котельных, их ремонтами, а также возможными рисками значительного увеличения затрат на сооружение новых источников. Кроме того для такого варианта полностью отсутствует возможность вернуть централизованную систему теплоснабжения, из-за значительных средств на сооружение теплосетей. Такой сценарий в ближайшее время не является актуальным.

Из трех вариантов наибольшее количество произведенной тепловой энергии имеется в первом варианте в связи с потерями тепла в теплосетях, особенно в ветхих и аварийных.

С учетом имеющихся рисков выбран второй вариант перспективного развития систем теплоснабжения.

Раздел 5. Предложения по строительству, реконструкции и техническому перевооружению и (или) модернизации источников тепловой энергии

Раздел актуализирован с учетом отсутствия ценовых зон теплоснабжения в сельском поселении.

5.1 Предложения по строительству источников тепловой энергии, обеспечивающих перспективную тепловую нагрузку на осваиваемых территориях поселения, городского округа, для которых отсутствует возможность и (или) целесообразность передачи тепловой энергии от существующих или реконструируемых источников тепловой энергии, обоснованная расчетами ценовых (тарифных) последствий для потребителей (в ценовых зонах теплоснабжения - обоснованная расчетами ценовых (тарифных) последствий для потребителей, если реализацию товаров в сфере теплоснабжения с использованием такого источника тепловой энергии планируется осуществлять по регулируемым ценам (тарифам), и (или) обоснованная анализом индикаторов развития системы теплоснабжения поселения, городского округа, города федерального значения, если реализация товаров в сфере теплоснабжения с использованием такого источника тепловой энергии будет осуществляться по ценам, определяемым по соглашению сторон договора поставки тепловой энергии (мощности) и (или) теплоносителя) и радиуса эффективного теплоснабжения

Предложения по реконструкции и новому строительству в отношении источников тепловой энергии, обеспечивающих перспективную тепловую нагрузку на осваиваемых территориях поселения, — центральной котельной — не требуется. Перспективная тепловая нагрузка на осваиваемых территориях поселения будет компенсирована индивидуальными источниками. Возможность передачи тепловой энергии от существующих источников тепловой энергии на основании результатов расчета радиусов эффективного теплоснабжения имеется. Целесообразности сооружения централизованного теплоснабжения при отсутствии крупных или сосредоточенных в плотной застройке потребителей нет и не предполагается на расчетный период.

Ценовые зоны теплоснабжения в сельском поселении отсутствуют.

5.2 Предложения по реконструкции источников тепловой энергии, обеспечивающих перспективную тепловую нагрузку в существующих и расширяемых зонах действия источников тепловой энергии

Перспективная тепловая нагрузка существующих центральных котельных остается на одном уровне в течении расчетного периода. Осваиваемые территории поселения с приростом жилого фонда в населенных пунктах поселения предусматриваются с индивидуальными источниками тепла. Реконструкции существующих источников тепловой энергии для этих целей не требуется.

5.3 Предложения по техническому перевооружению и (или) модернизации источников тепловой энергии с целью повышения эффективности работы систем теплоснабжения

Существующий источник тепловой энергии был технически перевооружен с установкой новых котлов в центральной котельной для перевода с твердого вида топлива на газообразное. Дальнейшее техническое перевооружение не предполагается.

5.4 Графики совместной работы источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии и котельных, меры по выводу из эксплуатации, консервации и демонтажу избыточных источников тепловой энергии, а также источников тепловой энергии, выработавших нормативный срок службы, в случае, если продление срока службы технически невозможно или экономически нецелесообразно

Источники тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии, и котельные работающие совместно на единую тепловую сеть отсутствуют.

Меры по выводу из эксплуатации, консервации и демонтажу избыточных источников тепловой энергии, а также источников тепловой энергии, выработавших нормативный срок службы, на расчетный период не предполагается.

5.5 Меры по выводу из эксплуатации, консервации и демонтажу избыточных источников тепловой энергии, а также источников тепловой энергии, выработавших нормативный срок службы, в случае, если продление срока службы технически невозможно или экономически нецелесообразно

Меры по выводу из эксплуатации, консервации и демонтажу избыточных источников тепловой энергии, а также источников тепловой энергии, выработавших нормативный срок службы, на расчетный период не предполагается.

5.6 Меры по переоборудованию котельных в источники тепловой энергии, функционирующие в режиме комбинированной выработки электрической и тепловой энергии

Меры по переоборудованию котельной в источники комбинированной выработки электрической и тепловой энергии на расчетный период не требуется. Собственные нужды (электрическое потребление) котельной компенсируются существующим электроснабжением. Оборудование, позволяющее осуществлять комбинированную выработку электрической энергии, будет крайне нерентабельно. Основные потребители тепла — муниципалитет — не имеет средств на единовременные затраты по реализации мероприятий когенерации.

5.7 Меры по переводу котельных, размещенных в существующих и расширяемых зонах действия источников тепловой энергии, функционирующие в режиме комбинированной выработки электрической и тепловой энергии, в пиковый режим работы, либо по выводу их из эксплуатации

Зоны действия источников комбинированной выработки тепловой и электрической энергии на территории сельского населенного пункта с. Колташево отсутствуют, существующая котельная не расположена в их зонах.

5.8 Температурный график отпуска тепловой энергии для каждого источника тепловой энергии или группы источников тепловой энергии в системе теплоснабжения, работающей на общую тепловую сеть и оценку затрат при необходимости его изменения

Оптимальный температурный график системы теплоснабжения для централизованного источника тепловой энергии остается прежним на расчетный период до 2043 г. с температурными режимами - (75-35 °C). Необходимость изменения графика отсутствует. Групп источников в системе теплоснабжения, работающих на общую тепловую сеть, не имеется. Оптимальный температурный график отпуска тепловой энергии центральной котельной с. Колташево, приведен на диаграмме рисунка 1.6, сохранятся на всех этапах расчетного периода.

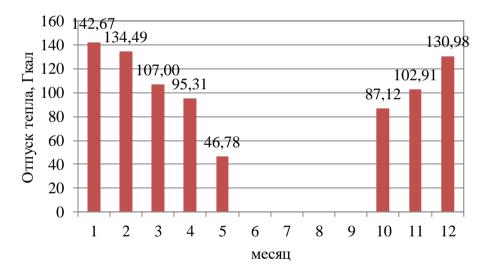


Рисунок 1.6 – Оптимальный температурный график отпуска тепловой энергии центральной котельной с. Колташево

Таблица 1.18 — Расчет отпуска тепловой энергии центральной котельной с. Колташево в течение года

Параметр		Значение в течение года											
Месяц	1	2	3	4	5	6	7	8	9	10	11	12	
Среднемесячная и годовая температура воздуха, °C	-15,8	-14,3	-7,4	3,9	11,9	16,8	18,4	16,2	10,7	2,4	-6,2	-12,9	
Температура воды, подава- емой в отопи- тельную си- стему, °C	53,40	51,50	45,00	42,20	31	0	0	0	0	40,30	44,00	50,60	
Температура сетевой воды в обратном трубопроводе, °С	29,00	28,50	26,70	25,90	23	0	0	0	0	25,40	26,40	28,20	
Разница тем- ператур, °С	24,40	23	18,3	16,3	8	0	0	0	0	14,90	17,60	22,4	
Отпуск тепла центральной котельной с. Колташево, Гкал	142,67	134,49	107,00	95,31	46,78	0	0	0	0	87,12	102,91	130,98	

5.9 Предложения по перспективной установленной тепловой мощности каждого источника тепловой энергии с предложениями по сроку ввода в эксплуатацию новых мощностей

Перспективная установленная тепловая мощность источников тепловой энергии с учетом аварийного и перспективного резерва тепловой мощности остается на прежнем уровне на расчетный период до 2043 г. Ввод в эксплуатацию новых мощностей для муниципальной котельной не требуется.

5.10 Предложения по вводу новых и реконструкции существующих источников тепловой энергии с использованием возобновляемых источников энергии, а также местных видов топлива

Возобновляемые источники энергии в сельском населенном пункте с. Колташево отсутствуют. Ввод в эксплуатацию и реконструкция существующих источников с использованием возобновляемых источников энергии не предполагается.

Индивидуальные источники тепловой энергии в частных жилых домах в качестве топлива используют природный газ, уголь и дрова.

Местным видом топлива в сельском населенном пункте с. Колташево являются дрова.

Раздел 6. Предложения по строительству, реконструкции и (или) модернизации тепловых сетей

Раздел актуализирован с учетом отсутствия ценовых зон теплоснабжения в сельском поселении.

6.1 Предложения по строительству, реконструкции и (или) модернизации тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом располагаемой тепловой мощности источников тепловой энергии в зоны с резервом располагаемой тепловой мощности источников тепловой энергии (использование существующих резервов)

Строительство и реконструкция тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом располагаемой тепловой мощности источников тепловой энергии в зоны с резервом располагаемой тепловой мощности источников тепловой энергии, на расчетный период не требуется.

6.2 Предложения по строительству, реконструкции и (или) модернизации тепловых сетей для обеспечения перспективных приростов тепловой нагрузки в осваиваемых районах поселения под жилищную, комплексную или производственную застройку

Перспективные приросты тепловой нагрузки центральной котельной в осваиваемых районах поселения не предполагаются на расчетный период до 2043 г. Строительство, реконструкция и (или) модернизация тепловых сетей для обеспечения перспективных приростов в осваиваемых территориях не требуется.

6.3 Предложения по строительству, реконструкции и (или) модернизации тепловых сетей в целях обеспечения условий, при наличии которых существует возможность поставок тепловой энергии потребителям от различных источников тепловой энергии при сохранении надежности теплоснабжения

Необходимость поставок тепловой энергии потребителям от различных источников тепловой энергии отсутствует. Строительство и реконструкция тепловых сетей для обеспечения этих мероприятий не требуется.

6.4 Предложения по строительству, реконструкции и (или) модернизации тепловых сетей для повышения эффективности функционирования системы теплоснабжения, в том числе за счет перевода котельных в пиковый режим работы или ликвидации котельных по основаниям, указанным в подпункте "д" пункта 11 Постановления № 154

Подпунктом "д" Пункта 11 Постановления Правительства РФ от 22.02.2012 № 154 установлено, что указанными в заголовке основаниями являются наличие избыточных источников тепловой энергии, а также источников тепловой энергии, выработавших нормативный срок службы, в случае если продление срока службы технически невозможно или экономически нецелесообразно. Однако, согласно пп. 5.5 раздела 5 такие источники в сельском населенном пункте с. Колташево отсутствуют.

Согласно ФЗ № 190 «О теплоснабжении», пиковый режим работы источника тепловой энергии – режим работы источника тепловой энергии с переменной мощностью для обеспечения изменяющегося уровня потребления тепловой энергии, теплоносителя потребителям. Перевод котельной в пиковый режим работы не предполагается на расчетный период до 2033 г. Ликвидация существующей котельной на основаниях, изложенных в п. 4.4, не предполагается.

6.5 Предложения по строительству, реконструкции и (или) модернизации тепловых сетей для обеспечения нормативной надежности теплоснабжения потребителей

Уровень надёжности поставляемых товаров и оказываемых услуг регулируемой организацией определяется исходя из числа возникающих в результате нарушений, аварий, инцидентов на объектах данной регулируемой организации: перерывов, прекращений, ограничений в подаче тепловой энергии в точках присоединения теплопотребляющих установок и (или) тепловых сетей потребителя товаров и услуг к коллекторам или тепловым сетям указанной регулируемой организации, сопровождаемых зафиксированным приборами учета теплоносителя или тепловой энергии прекращением подачи теплоносителя или подачи тепловой энергии на теплопотребляющие установки.

Существующая тепловая сеть с. Колташево 2008 г. сооружения. Реконструкция сети на расчетный период до 2043 г. потребуется на последнем этапе расчетного периода.

Строительство дополнительных тепловых сетей для обеспечения нормативной надежности и безопасности теплоснабжения не требуется, существующие длины не превышают предельно допустимую длину нерезервированных участков тупиковых теплопроводов, диаметры существующих теплопроводов для обеспечения резервной подачи теплоты потребителям при отказах достаточны. Потребители тепловой энергии относятся ко второй категории, при которой допускается снижение температуры в отапливаемых помещениях на период ликвидации аварии, но не более 54 ч, до 12 °C.

Раздел 7. Предложения по переводу открытых систем теплоснабжения (горячего водоснабжения), отдельных участков таких систем на закрытые системы горячего водоснабжения

7.1 Предложения по переводу существующих открытых систем теплоснабжения (горячего водоснабжения), отдельных участков таких систем на закрытые системы горячего водоснабжения, для осуществления которого необходимо строительство индивидуальных и (или) центральных тепловых пунктов при наличии у потребителей внутридомовых систем горячего водоснабжения

Открытые схемы теплоснабжения на территории сельского населенного пункта с. Колташево отсутствуют. Потребление теплоносителя из труб теплоснабжения не осуществляется.

Строительство индивидуальных и (или) центральных тепловых пунктов, в том числе для потребителей с внутридомовыми системами горячего водоснабжения, на расчетный период не планируется.

7.2 Предложения по переводу существующих открытых систем теплоснабжения (горячего водоснабжения), отдельных участков таких систем на закрытые системы горячего водоснабжения, для осуществления которого отсутствует необходимость строительства индивидуальных и (или) центральных тепловых пунктов по причине отсутствия у потребителей внутридомовых систем горячего водоснабжения

Открытые системы теплоснабжения (горячего водоснабжения) на территории сельского населенного пункта с. Колташево отсутствуют. Мероприятия по переводу открытых систем теплоснабжения (горячего водоснабжения) в закрытые системы горячего водоснабжения не требуется. Необходимость строительства индивидуальных и (или) центральных тепловых пунктов по причине отсутствия у потребителей внутридомовых систем горячего водоснабжения отсутствует.

Раздел 8. Перспективные топливные балансы

8.1 Перспективные топливные балансы для каждого источника тепловой энергии по видам основного, резервного и аварийного топлива на каждом этапе

Основным видом топлива для источника теплоснабжения — центральной котельной с. Колташево является природный газ. По данным ГП «Уралтрансгаз» природный газ имеет следующую характеристику: теплота сгорания — $7880 \, \text{ккал/m}^3$, плотность газа — $0,563 \, \text{кг/m}^3$.

Перспективные топливные балансы централизованного источника тепловой энергии, расположенного в границах поселения по видам основного, резервного и аварийного топлива на каждом этапе приведены в таблице 1.19.

Таблица 1.19 – Перспективные топливные балансы источника тепловой энергии с. Колташево

Источник										
тепловой энергии	Вид топлива	2023	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039- 2043
	основное (природный газ), тыс.м ³ /год	148	148	148	148	147	147	146	145	144
	основное (условное), т.у.т./год	166,6	166,6	166,1	166,1	165,6	165,6	164,1	163,1	161,6
Цен-	резервное (дизельное топливо), т.н.т./год	2,52	2,52	2,52	2,52	2,52	2,52	2,52	2,52	2,52
котельная	резервное (условное), т.у.т./год	3,85	3,85	3,85	3,85	3,85	3,85	3,85	3,85	3,85
	аварийное (мазут), т.н.т./год	1,72	1,72	1,72	1,72	1,72	1,72	1,72	1,72	1,72
	аварийное (условное), т.у.т./год	2,63	2,63	2,63	2,63	2,63	2,63	2,63	2,63	2,63

8.2 Потребляемые источником тепловой энергии виды топлива, включая местные виды топлива, а также используемые возобновляемые источники энергии

Основными видами топлива для котельных сельского населенного пункта с. Колташево является природный газ.

Индивидуальные источники тепловой энергии в частных жилых домах в качестве топлива используют природный газ, уголь и дрова.

Местным видом топлива в сельском населенном пункте с. Колташево являются дрова. Существующие источники тепловой энергии не используют местные виды топлива в качестве основного в связи с низким КПД и высокой себестоимостью.

Возобновляемые источники энергии отсутствуют.

8.3 Виды топлива, их долю и значение низшей теплоты сгорания топлива, используемые для производства тепловой энергии по каждой системе теплоснабжения

Основными видами топлива для центральных котельных сельского населенного пункта с. Колташево является природный газ. Доля их использования составляет 100 %. Значения низшей теплоты сгорания природного газа и его доля по источникам приведены в таблице 1.20.

Таблица 1.20 – Значение низшей теплоты сгорания топлива, используемые для производства тепловой энергии по каждой системе теплоснабжения

№ ПП	Система теплоснабже- ния	Топливо	Объем по- требления, т./тыс.м3	Доля потребления, %	Значение низшей теплоты сгорания топлива, ккал/т	
1.	Котельная сельского населенного пункта с. Колташево	природный газ	148	100,00	8035	

8.4 Преобладающий в поселении вид топлива, определяемый по совокупности всех систем теплоснабжения, находящихся в соответствующем поселении

Преобладающий вид топлива в сельском населенном пункте с. Колташево – природный газ.

8.5 Приоритетное направление развития топливного баланса поселения

Приоритетным направлением развития топливного баланса сельского населенного пункта с. Колташево является сохранение использования источниками теплоснабжения газообразного топлива.

Раздел 9. Инвестиции в строительство, реконструкцию и техническое перевооружение и (или) модернизацию

Раздел актуализирован с учетом отсутствия ценовых зон теплоснабжения в сельском поселении.

9.1 Предложения по величине необходимых инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию источников тепловой энергии на каждом этапе

Инвестиции в реконструкцию источников тепловой энергии на расчетный период до 2043 г. приведены в таблице 1.21. Строительство, техническое перевооружение и (или) модернизация источников тепловой энергии с. Колташево на расчетный период не предполагается.

Таблица 1.21 – Инвестиции в реконструкцию источника тепловой энергии с. Колташево

Мороничанио		Об	ъем и	нвести	ций по	этапам (го	дам), тыс. р	уб.	Источник фи-		
Мероприятие	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039- 2043	нансирования		
Замена котлов			300	300					Внебюджетные		
с. Колташево			300	300					средства		
Замена сетевых		100							Внебюджетные		
насосов		100		100							средства

9.2 Предложения по величине необходимых инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию тепловых сетей, насосных станций и тепловых пунктов на каждом этапе

Инвестиции в строительство, реконструкцию и техническое перевооружение насосных станций и тепловых пунктов на расчетный период до 2043 г. не требуются. Инвестиции в реконструкцию тепловых сетей приведена в таблице 1.22.

Таблица 1.22 – Инвестиции в реконструкцию тепловых сетей с. Колташево

	Объем	инвес	с. руб.	Источник фи-						
Мероприятие	2024	2025	2026	2027	2028	2029-	2034-	2039-	=	
	2024	2023	2026	2027	2028	2033	2038	2043	нансирования	
Реконструкция тепловых сетей центральной ко- тельной (165 п.м.)								400,785	Внебюджетные средства	

9.3 Предложения по величине необходимых инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию в связи с изменениями температурного графика и гидравлического режима работы системы теплоснабжения на каждом этапе

Изменений температурного графика и гидравлического режима работы системы теплоснабжения не предполагается на расчетный период до 2043 г. Инвестиции в строительство, реконструкцию и техническое перевооружение на указанные мероприятия не требуются. 9.4 Предложения по величине необходимых инвестиций для перевода открытой системы теплоснабжения (горячего водоснабжения), отдельных участков такой системы на закрытую систему горячего водоснабжения на каждом этапе

Перевод открытой системы теплоснабжения (горячего водоснабжения) в закрытую систему горячего водоснабжения до конца расчетного периода не планируется, поскольку таковые отсутствуют. Инвестиции на указанные мероприятия не требуются.

9.5 Оценка эффективности инвестиций по отдельным предложениям

Экономический эффект мероприятий по реконструкции тепловых сетей достигается за счет сокращения аварий — издержек на их ликвидацию, снижения потерь теплоносителя и потребления энергии котельных.

Экономический эффект мероприятий по техническому перевооружений котельных достигается за счет повышения КПД котлов, уровня автоматизации (малообслуживаемости), повышения надежности и сокращения возможных перерывов и простоев котельных.

Показатель эффективности реализации мероприятия приведенный в таблице 1.23 рассчитан при условии обеспечения рентабельности мероприятий инвестиционной программы со средним сроком окупаемости 10 лет.

Таблица 1.23 – Оценка эффективности инвестиций

No		Год										
ПП	Показатель	2023	2024	2025	2026	2027	2028- 2032	2033- 2037	2038- 2042	Всего		
1	Эффективность мероприятия по реконструкции тепловых сетей, тыс. р.	0	0	0	0	0	0	0	40	40		
3	Эффективность мероприятия по ремонту котельных, тыс. р.	0	10	40	70	70	350	350	350	1240		
4									1,16			

9.6 Величина фактически осуществленных инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию объектов теплоснабжения за базовый период и базовый период актуализации

Ремонт и сооружение тепловых сетей за базовый период и базовый период актуализации выполнен за счет собственных средств теплоснабжающих организаций и сельских населенных пунктов. Сторонние инвестиции не привлекались.

Раздел 10. Решение о присвоении статуса единой теплоснабжающей организации (организациям)

10.1 Решение о присвоении статуса теплоснабжающей организации (организациям)

На июнь 2024 г. единой теплоснабжающей организацией (ЕТО) в сельском населенном пункте с. Колташево является организация ООО «Уют».

Согласно постановлению Правительства РФ от 8 августа 2012 г. № 808 Статус единой теплоснабжающей организации присваивается теплоснабжающей и (или) теплосетевой организации при утверждении схемы теплоснабжения поселения главой местной администрации муниципального района — в отношении сельских поселений, расположенных на территории соответствующего муниципального района, если иное не установлено законом субъекта Российской Федерации. Единая теплоснабжающая организация (организации) определяется в отношении каждой или нескольких систем теплоснабжения, расположенных в границах поселения.

10.2 Реестр зон деятельности единой теплоснабжающей организации (организаций)

Зоной деятельности единой теплоснабжающей организации являются территории, охваченные системами теплоснабжения сельского населенного пункта с. Колташево, в границах которых ЕТО обязана обслуживать любых обратившихся к ней потребителей тепловой энергии согласно Правилам организации теплоснабжения в Российской Федерации (утв. постановлением Правительства РФ от 8 августа 2012 г. № 808.

Таблица 1.24 – Реестр зон деятельности единых теплоснабжающих организаций

Наименование	ИНН	Юридический / почтовый адрес	Системы теплоснабжения
ООО «Уют»	4510026846	641334, Курганская область, Кетовский	Сельского населенного
000 «yю1»	4310020840	р-н, п. Светлые поляны, мкр 1-й, д. 18	пункта с. Колташево

10.3 Основания, в том числе критерии, в соответствии с которыми теплоснабжающая организации присвоен статус единой теплоснабжающей организацией

В соответствии с «Правилами организации теплоснабжения в Российской Федерации» (утв. постановлением Правительства РФ от 8 августа 2012 г. N 808), критериями определения единой теплоснабжающей организации являются:

- 1 владение на праве собственности или ином законном основании источниками тепловой энергии с наибольшей рабочей тепловой мощностью и (или) тепловыми сетями с наибольшей емкостью в границах зоны деятельности единой теплоснабжающей организации;
 - 2 размер собственного капитала;
- 3 способность в лучшей мере обеспечить надежность теплоснабжения в соответствующей системе теплоснабжения.

Обоснование соответствия организации, предлагаемой в качестве единой теплоснабжающей организации, критериям определения единой теплоснабжающей организации, устанавливаемым Правительством Российской Федерации, приведено в таблице 1.25.

Таблица 1.25 – Обоснование соответствия организации критериям определения ЕТО

	Обоснование соответствия	организации, критер	риям определения ЕТО
зона деятельности (источник тепло- снабжения)	владение на праве собственности или ином законном основании источниками тепловой энергии с наибольшей рабочей тепловой мощностью и (или) тепловыми сетями с наибольшей емкостью в границах зоны деятельности единой теплоснабжающей организации	размер соб- ственного капи- тала	способность в лучшей мере обеспечить надежность теплоснабжения в соответствующей системе теплоснабжения
Котельная с. Колташево	Кетовский муниципальный округ	Кетовский му- ниципальный округ	ООО «Уют»

Необходимо отметить, что компания ООО «Уют» имеет возможность в лучшей мере обеспечить надежность теплоснабжения в системах теплоснабжения сельского населенного пункта с. Колташево, что подтверждается наличием у компании технических возможностей и квалифицированного персонала по наладке, мониторингу, диспетчеризации, переключениям и оперативному управлению гидравлическими и температурными режимами системы теплоснабжения.

В соответствии с «Правилами организации теплоснабжения в Российской Федерации», в случае если организациями не подано ни одной заявки на присвоение статуса единой теплоснабжающей организации, статус единой теплоснабжающей организации присваивается организации, владеющей в соответствующей зоне деятельности источниками тепловой энергии с наибольшей рабочей тепловой мощностью и (или) тепловыми сетями с наибольшей тепловой емкостью.

10.4 Информация о поданных теплоснабжающими организациями заявках на присвоение статуса единой теплоснабжающей организации

Заявки, поданные теплоснабжающими организациями на присвоение статуса единой теплоснабжающей организации, отсутствуют.

10.5 Реестр систем теплоснабжения, содержащий перечень теплоснабжающих организаций, действующих в каждой системе теплоснабжения, расположенных в границах поселения городского округа, города федерального значения

В границах сельского населенного пункта с. Колташево системы централизованного теплоснабжения обслуживают теплоснабжающие организации, приведенные в таблице 1.26.

Таблица 1.26 – Реестр систем теплоснабжения, действующих в каждой системе теплоснабжения

№ пп	Система теплоснабжения	Теплоснабжающая организация
1	Котельная с. Колташево	OOO «Уют»

Раздел 11. Решения о распределении тепловой нагрузки между источниками тепловой энергии

Распределение тепловой нагрузки между источниками тепловой энергии не предполагается на расчетный период до 2043 г. Условия, при которых имеется возможность поставок тепловой энергии потребителям от различных источников тепловой энергии при сохранении надежности теплоснабжения, отсутствуют.

Раздел 12. Решения по бесхозяйным тепловым сетям

В настоящий момент имеется признание права муниципальной собственности на тепловые сети и котельные за Кетовским муниципальным округом.

Раздел 13. Синхронизация схемы теплоснабжения со схемой газоснабжения и газификации субъекта Российской Федерации и (или) поселения, схемой и программой развития электроэнергетических систем России, а также со схемой водоснабжения и водоотведения поселения, городского округа, города федерального значения

13.1 Описание решений (на основе утвержденной региональной (межрегиональной) программы газификации жилищно-коммунального хозяйства, промышленных и иных организаций) о развитии соответствующей системы газоснабжения в части обеспечения топливом источников тепловой энергии

Развитие системы газоснабжения в сельском населенном пункте с. Колташево определяется Генеральной схемой газоснабжения и газификации Курганской области. В настоящее время АО «Газпром промгаз» осуществляет актуализацию Генеральной схемы газоснабжения и газификации Курганской области на период до 2035 года.

Газоснабжение Курганской области осуществляется исключительно за счет внешних источников. Основой комплекса природного газа являются, проходящие по территории Курганской области магистральные газопроводы «Уренгой — Челябинск» и «Комсомольское — Челябинск» протяженностью 163 км с газопроводом-отводом «Кызылбай — Курган» протяженностью 143 км и газопроводом-отводом «Песчано — Коледино — Шумиха — Щучье — Мишкино — Юргамыш» протяженностью около 190 км, а также газораспределительные станции, газораспределительные сети и прочие объекты газораспределения, обеспечивающие поставки природного газа населению, промышленным и коммунальным потребителям области.

Газификация населенных пунктов Курганской области осуществлялась в рамках Инвестиционной программы Курганской области, Программы развития газоснабжения и газификации Курганской области на период 2012-2015 годы ОАО «Газпром» на основе Генеральной схемы газоснабжения и газификации Курганской области.

Строительство газотранспортной системы по Курганской области было начато в 1981 году газопроводами-отводами на с. Шатрово, протяженностью 11,3 км и г. Шадринск, протяженностью 11,7 км, которые были введены в эксплуатацию совместно с ГРС в 1983 и в 1985 году соответственно.

На конец 1996 года общая протяженность газотранспортной сети Курганской области составляла 743 км. Газифицировано 39 тысяч домовладений, уровень газификации природным газом составлял 9 %.

Согласно региональной программе газификации Курганской области на 2021 - 2030 годы сводный план-график догазификации Курганской области приведен в таблице 1.27.

Объекты программы 2021—2025: Газопровод межпоселковый ПГБ ст. Введенское — д. Логоушка — с. Сычево — п. Логовушка — с. Пименовка — с. Чесноки с отводом на ООО «Бентонит Кургана» Кетовского района Курганской области; Газопровод межпоселковый с. Менщиково — с. Б.Раково с отводами на д. Галишово, с. Шмаково, д. Галаево, д.Орловка Кетовского района Курганской области.

Институциональная схема газоснабжения заключается в нижеследующем.

Единственной организацией, осуществляющей в Курганской области деятельность по транспортировке газа по магистральным газопроводам, является Общество с ограниченной ответственностью «Газпром трансгаз Екатеринбург».

Таблица 1.27 — Сводный план-график догазификации Курганской области сельских населенных пунктов

N	Муни-	Наиме	Общее	Наиме-	Колі	ичест	во обт	Бектов	дом	овлад	ений в	нас	еленн	ом пун	ікте,	для
Π /	ципаль	нова-	количе-	нование	кот	горых	созда	ается т	ехни	ическа	ая возм	ижог	ость і	подклн	очен	ИЯ
П	паль-	ние	ство	газорас-	20)21 го	Д	2022 год			2023 год			2024 год		
	ное	насе-	негази-	предели-	Ко-	Сро	к до-	Ко-	C	рок	Ко-	C	рок	Ко-	C	рок
	обра-	лен-	фициро-	тельной	личе-	гази	рика-	личе-	доі	гази-	личе-	_	гази-	личе-	доі	гази-
	зова-	НОГО	ванных	органи-	ство,	ции	(ме-	ство,	фик	ации	ство,	фик	ации	ство,	фик	ации
	ние	пунк-	домо-	зации	шт.	CS	щ)	шт.	(ме	есяц)	шт.	(ме	есяц)	шт.	(ме	есяц)
		та	владе-			нача	окон		нач	окон		нач	окон		нач	окон
			ний в			ЛО	ча-		ало	ча-		ало	ча-		ало	ча-
			насе-				ние			ние			ние			ние
			ленном													
			пункте,													
			шт.													
8	Кетов-	Кол-	122	АО "Газ-	2	Сен	Де-	56	Ma	Де-	5	Ma	Ав-		Ma	-
	ский	таше-		пром		тябр	кабр		й	кабр		й	густ		й	
	муни-	Bo, c.		газорас-		Ь	Ь			Ь						
	ципаль			пределе-												
	паль-			ние Кур-												
	ный			ган"												
	округ															

Рисунок 1.7 – Схема Газификации Кетовского муниципального округа

Единственной газораспределительной организацией в Курганской области является Акционерное общество «Газпром газораспределение Курган» (далее - АО «Газпром газораспределение Курган»).

Поставщиком природного газа для объектов в Курганской области является общество с ограниченной ответственностью «Газпром Межрегионгаз Курган» (далее - ООО «Газпром Межрегионгаз Курган»), При общем объеме поставки по итогам 2022 года - 1,764 млрд м³, реализация газа ООО «Газпром Межрегионгаз Курган» составляет 100%.

Специализированная организация, осуществляющая в Курганской области услуги по обслуживанию внутридомового газового оборудования, - АО «Газпром газораспределение Курган».

Схема теплоснабжения сельского населенного пункта с. Колташево не противоречит схеме и программе развития электроэнергетики, а также Схеме водоснабжения и водоотведения сельского населенного пункта с. Колташево.

13.2 Описание проблем организации газоснабжения источников тепловой энергии

Существенные проблемы газификации сельского населенного пункта с. Колташево отсутствуют.

13.3 Предложения по корректировке утвержденной (разработке) региональной (межрегиональной) программы газификации жилищно-коммунального хозяйства, промышленных и иных организаций для обеспечения согласованности такой программы с указанными в схеме теплоснабжения решениями о развитии источников тепловой энергии и систем теплоснабжения

Основным предложением является включение плана полной газификации сельского населенного пункта с. Колташево в Генеральную схему газоснабжения и газификации Курганской области на период до 2035 года.

13.4 Описание решений (вырабатываемых с учетом положений утвержденных схемы и программы развития электроэнергетических систем России, а в период до утверждения таких схемы и программы в 2023 году (в отношении технологически изолированных территориальных электроэнергетических систем в 2024 году) - также утвержденных схемы и программы развития Единой энергетической системы России, схемы и программы перспективного развития электроэнергетики субъекта Российской Федерации, на территории которого расположена соответствующая технологически изолированная территориальная электроэнергетическая система) по строительству, реконструкции, техническому перевооружению и (или) модернизации, выводу из эксплуатации источников тепловой энергии и решений по реконструкции, техническому перевооружению, модернизации, не связанных с увеличением установленной генерирующей мощности, и выводу из эксплуатации генерирующих объектов, включая входящее в их состав оборудование, функционирующее в режиме комбинированной выработки электрической и тепловой энергии, в части перспективных балансов тепловой мощности в схемах теплоснабжения

Источники тепловой энергии и генерирующие объекты, функционирующие в режиме комбинированной выработки электрической и тепловой энергии, на территории сельского населенного пункта с. Колташево отсутствуют.

Строительство источников тепловой энергии и генерирующих объектов, функционирующих в режиме комбинированной выработки электрической и тепловой энергии, до конца расчетного периода не ожидается.

13.5 Обоснованные предложения по строительству (реконструкции, связанной с увеличением установленной генерирующей мощности) генерирующих объектов, функционирующих в режиме комбинированной выработки электрической и тепловой энергии, для обеспечения покрытия перспективных тепловых нагрузок для их рассмотрения при разработке схемы и программы развития электроэнергетических систем России, а также при разработке (актуализации) генеральной схемы размещения объектов электроэнергетики - при наличии таких предложений по результатам технико-экономического сравнения вариантов покрытия перспективных тепловых нагрузок

До конца расчетного периода в сельском населенном пункте с. Колташево строительство генерирующих объектов, функционирующих в режиме комбинированной выработки электрической и тепловой энергии, указанных в схеме теплоснабжения, не ожидается до конца расчетного периода.

Таблица 1.28 – Предложения по строительству (реконструкции) генерирующих объектов, функционирующих в режиме комбинированной выработки электрической и тепловой энергии

№	Характеристика	Статус
1	Наименование генерирующего объекта	отсутствует
2	Предлагаемый энергорайон его размещения	отсутствует
3	Год ввода генерирующего объекта в эксплуатацию после завершения строи-	OTCVTCTDVCT
	тельства (реконструкции) с выделением этапов (при наличии)	отсутствует
4	Величина установленной генерирующей (электрической) мощности генериру-	
	ющего объекта, минимально необходимой для обеспечения удовлетворения	отсутствует
	потребностей в тепловой энергии и мощности	
5	Типы вновь вводимого генерирующего оборудования в составе такого генери-	OTCUTCTBUCT
	рующего объекта	отсутствует

13.6 Описание решений (вырабатываемых с учетом положений утвержденной схемы водоснабжения поселения, городского округа, города федерального значения) о развитии соответствующей системы водоснабжения в части, относящейся к системам теплоснабжения

Развитие системы водоснабжения в части, относящейся к муниципальным системам теплоснабжения на территории сельского населенного пункта с. Колташево не ожидается до конца расчетного периода.

13.7 Предложения по корректировке утвержденной (разработке) схемы водоснабжения поселения, городского округа, города федерального значения для обеспечения согласованности такой схемы и указанных в схеме теплоснабжения решений о развитии источников тепловой энергии и систем теплоснабжения

Предложения по корректировке утвержденной (разработке) Схемы водоснабжения сельского населенного пункта с. Колташево для обеспечения согласованности такой схемы и указанных в схеме теплоснабжения решений о развитии источников тепловой энергии и систем теплоснабжения отсутствуют.

Раздел 14. Индикаторы развития систем теплоснабжения поселения

Раздел разработан с учетом отсутствия ценовых зон теплоснабжения в поселении.

Индикаторы развития систем теплоснабжения сельского населенного пункта с. Колташево в соответствии с методическими указаниями по разработке схем теплоснабжения на начало и конец расчетного периода приведены в таблице 1.29.

Таблица 1.29 – Индикаторы развития систем теплоснабжения поселения

№	ица 1.29 – индикаторы развития систем теплоснаожения п Год		суще-	перспек-
п/п	Индикатор	Ед. изм.	•	тивные
11/11	индикатор	Ед. изм.	ствующие 2023	2043
1.	количество прекращений подачи тепловой энергии,		2023	2043
1.	± ± ·	En		
	теплоносителя в результате технологических нарушений на тепловых сетях	Ед.	0.0002	0.00002
2			0,0002	0,00002
2.	количество прекращений подачи тепловой энергии,	E-	0	0
	теплоносителя в результате технологических наруше-	Ед.	0	U
3.	ний на источниках тепловой энергии			
3.	удельный расход условного топлива на единицу тепло-	Т/Г		
	вой энергии, отпускаемой с коллекторов источников	Тут/Гкал	0.176	0.176
4	тепловой энергии		0,176	0,176
4.	отношение величины технологических потерь тепло-	Γ / 2		
	вой энергии, теплоносителя к материальной характери-	Γ кал/м 2	4 7004	0.77.4
	стике тепловой сети		1,5991	0,7564
5.	коэффициент использования установленной тепловой	_	0,349	0,349
	мощности		,	,
6.	удельная материальная характеристика тепловых се-	M^2/Γ кал	0,039	0,039
	тей, приведенная к расчетной тепловой нагрузке		- ,	-,
7.	доля тепловой энергии, выработанной в комбиниро-			
	ванном режиме (как отношение величины тепловой			
	энергии, отпущенной из отборов турбоагрегатов, к об-	%	-	-
	щей величине выработанной тепловой энергии в гра-			
	ницах поселения)			
8.	удельный расход условного топлива на отпуск элек-	Тут/кВт	_	_
	трической энергии	Tyl/RD1		
9.	коэффициент использования теплоты топлива (только			
	для источников тепловой энергии, функционирующих		_	_
	в режиме комбинированной выработки электрической			
	и тепловой энергии)			
10.	доля отпуска тепловой энергии, осуществляемого по-			
	требителям по приборам учета, в общем объеме отпу-	%	0	100
	щенной тепловой энергии			
11.	средневзвешенный (по материальной характеристике)	лет		
	срок эксплуатации тепловых сетей	JICI	15	1
12.	отношение материальной характеристики тепловых			
	сетей, реконструированных за год, к общей материаль-	%		
	ной характеристике тепловых сетей		0	100
13.	отношение установленной тепловой мощности обору-			
	дования источников тепловой энергии, реконструиро-	%		
	ванного за год, к общей установленной тепловой мощ-	70		
	ности источников тепловой энергии		0	0

No	Год		суще-	перспек-
Π/Π	Индикатор	Ед. изм.	ствующие	тивные
			2023	2043
14.	Отсутствие зафиксированных фактов нарушения антимонопольного законодательства (выданных предупреждений, предписаний), а также отсутствие применения санкций, предусмотренных Кодексом Российской Федерации об административных правонарушениях, за нарушение законодательства Российской Федерации в сфере теплоснабжения, антимонопольного законодательства Российской Федерации, законодательства	Ед.		
	Российской Федерации о естественных монополиях		0	0

Раздел 15. Ценовые (тарифные) последствия

Раздел разработан с учетом отсутствия ценовых зон теплоснабжения в сельских населенных пунктах.

Анализ влияния реализации проектов схемы теплоснабжения, предлагаемых к включению в инвестиционную программу теплоснабжающих организаций, выполнен с учетом того, что собственник и основной потребитель является муниципальным. Инвестиции в строительство, реконструкцию и перевооружение осуществляются главным образом за счет бюджетной составляющей. Тарифные источники финансирования могут быть определены в финансовом плане организации при утверждении инвестиционной программы теплоснабжающей организации.

При этом необходимо отметить, что схема теплоснабжения является предпроектным документом, а утверждаемый тариф на тепловую энергию в рамках регулирования зависит от установленного предельного индекса изменения размера платы граждан за коммунальные услуги.

Долгосрочные параметры регулирования и тарифов на тепловую энергию на 2023 год потребителям ООО «Уют» утверждены приказом департаментом государственного регулирования цен и тарифов Курганской области № 44-7 от 19.12.2018 г.

Прогнозные значения определены с учетом имеющихся производственных расходов товарного отпуска тепловой энергии за 2023 г., принятые по материалам тарифных дел, индексов инфляции, а также изменения технико-экономических показателей работы источников теплоснабжения при реализации мероприятий Схемы.

Результаты расчета приведены в главе 14 обосновывающих материалов.

Раздел 16. Меры по обеспечению надежности теплоснабжения и бесперебойной работы систем теплоснабжения

Настоящий раздел разработан с учетом поручения Президента Российской Федерации от 29 декабря 2021 года № Пр-325 (подпункт «б» пункта 2) по итогам совещания по вопросам прохождения осенне-зимнего отопительного период.

Настоящий раздел содержит сведения о мероприятиях по обеспечению надежности теплоснабжения и бесперебойности работы систем теплоснабжения, потенциальных угроз для их работы, оценке потребности в инвестициях, необходимых для устранения данных угроз.

Сценарии развития аварий в системах теплоснабжения с моделированием гидравлических режимов работы таких систем, в том числе при отказе элементов тепловых сетей и при аварийных режимах работы систем теплоснабжения, связанных с прекращением подачи тепловой энергии приведены в главе 11 обосновывающих мероприятий.

16.1 Аварийные ситуации в системах отопления зданий

К характерным отказам систем отопления можно отнести:

- течи в резьбовых и сварочных соединениях трубопроводов (за счет сборки на сухом льне, попадания воздуха в систему, опорожнения в летний период, механических повреждений, скачков давлений теплоносителя и др.);
- течи в отопительных приборах (периодическое опорожнение систем, подпитка водой без деаэрации и достаточной химобработки, механические повреждения, размораживание);
- неравномерный прогрев различных, особенно дальних стояков (разрегулировка, внутреннее обрастание трубопроводов, отсутствие летних промывок системы, воздушные «мешки»);
- неравномерный прогрев отопительных приборов по высоте здания (обрастание трубопроводов, нерасчетный расход теплоносителя, завышенные теплопотери здания, несанкционированная установка отопительных приборов в отдельных помещениях, засорение отдельных приборов и арматуры, «завоздушивание» отдельных приборов);
- замерзание отопительных приборов, участков трубопроводов (локальное охлаждение при открытых наружных дверях или окнах, отсутствие изоляции на разводящих трубопроводах, низкая температура теплоносителя, перерывы в циркуляции теплоносителя);
- разрывы трубопроводов (отсутствие межэтажных гильз, компенсаторов, деформация конструктивных элементов здания, нерасчетные механические нагрузки на трубопроводы, завышенные давления в трубопроводах, замерзание участков трубопроводов, внутренняя коррозия и др.);
- прекращение циркуляции теплоносителя («завоздушивание» системы, частичное опорожнение, снижение или отсутствие перепада давления на вводе, засорение или перемерзание участка трубопровода, утечка воды из подающего трубопровода и др.).

К аварийным ситуациям, требующим оперативного вмешательства, следует отнести:

- разрыв трубопровода или отопительного прибора;
- прекращение циркуляции теплоносителя.

В первом случае, как правило, требуется опорожнить часть или всю отопительную систему и провести восстановительные работы. В случае хорошо (с продувкой) опорожненной системы (или ее части) нет угрозы перемерзания трубопроводов и отопительных приборов, и время ремонтных работ определяется, помимо социальных требований, остыванием здания (или ее части), а также из условия возможного спонтанного развития аварий при нерасчетном подключении потребителями электрических и газовых источников теплоты.

В случае прекращения циркуляции теплоносителя, особенно в системе отопления в целом, время ликвидации аварии (до опорожнения) определяется климатическими условиями. Для увеличения времени нахождения системы отопления в заполненном состоянии необходима реализация следующих мероприятий:

- опорожнение только лестничных стояков (как наиболее уязвимых мест);
- организация естественной циркуляции через байпасную линию (или путем снятия сопла элеватора);
 - подключение на вводе циркуляционного насоса;
 - подключение на вводе передвижного дополнительного источника тепла;
 - теплоизоляция трубопроводов на вводе, лестничных площадках;
- подключение в квартирах дополнительных источников тепла с одновременной организацией циркуляции в системе отопления;
 - обогрев лестничных площадок передвижными воздушно отопительными агрегатами.

16.2 Неисправности элементов теплового ввода

В процессе эксплуатации на тепловом вводе возможны следующие неисправности, косвенно способствующие возникновению аварийных ситуаций в системах отопления и горячего водоснабжения (таблица 1.30).

Таблица 1.30 — Неисправности в системах отопления и горячего водоснабжения косвенно способствующие возникновению аварийных ситуаций

Неисправности	Возможные последствия
Засорение сопла элеватора	Прекращение циркуляции теплоносителя
Удаление сопла элеватора	Перегрев верхних этажей, увеличение давления в системе
	отопления с возможным превышением допустимых значе-
	ний (разрыв отопительных приборов)
Заполнение грязевиков шламом	Снижение перепада давления и, как следствие, уменьшение
	циркуляции в системе отопления
Нарушение теплоизоляции трубо-	Увеличение тепловых потерь, ускорение замерзания трубо-
проводов	проводов при аварии
Зарастание трубок теплообменни-	Снижение температуры воздуха в отапливаемых помещени-
ков	ях, вертикальная разрегулировка
Отказы в работе циркуляционных	Прекращение циркуляции теплоносителя, возможность пе-
насосов	ремерзания трубопроводов системы отопления

16.3 Аварийные ситуации в тепловых сетях

Наиболее характерными неполадками в тепловых сетях являются:

- разрыв трубопроводов или разрушение арматуры;
- увеличенная подпитка тепловых сетей за счет свищей в трубопроводах;
- гидравлическая разрегулировка тепловых сетей.

Аварии, связанные с разрывом трубопровода, требуют оперативного вмешательства. В зависимости от назначения, диаметра, схемы и типа системы теплоснабжения возможны следующие этапы и варианты их ликвидации с последующим ремонтом теплопровода:

- обнаружение точного места аварии;

- прогноз теплового и гидравлического режимов при развитии аварии и отключении участка теплосети;
 - отключение аварийного трубопровода;
- выбор оптимального теплового и гидравлического режимов системы на период восстановления аварийного теплопровода с разработкой стратегии и времени восстановления.

В основе отмеченной последовательности лежит выбор одного из вариантов временного функционирования системы теплоснабжения аварийной зоны:

- функционирование системы теплоснабжения с отключенным на период ремонта участком (временное отключение системы отопления);
- отопление зданий с помощью локальных обогревателей (воздушные калориферы, электрические или газовые отопительные приборы, «буржуйки» и др.);
- работа трех-, четырехтрубной тепловой сети (с переключением) в режиме на отопление (без горячего водоснабжения);
 - подключение в месте аварии передвижной временной котельной;
 - работа двухтрубной тепловой сети по однотрубному варианту (на излив).

Первый вариант – наиболее неблагоприятный, но вместе с тем он достаточно широко применяется. Здесь определяющим является допустимый период времени на восстановление трубопровода.

Сроки проведения аварийно-восстановительных работ зависят от диаметра трубопровода, на котором эта авария произошла. В таблице 1.31 приведены примерные сроки ликвидации повреждений на подземных теплопроводах.

Таблица 1.31 – Примерные сроки ликвидации повреждений на подземных теплопроводах

1 1 1 7	, ,			1 ''				
	Время, ч, выполнения этапа при диаметре тру-							
Programme	бы, мм							
Этап работ	100-	250-	500-	800-	1000-			
	200	400	700	900	1400			
Отключение участка сети	1	2	4	4	4			
Вызов представителей, доставка механизмов	2	3	3	3	3			
Раскрытие шурфов для точного обнаружения ме-	3	5	6	7	9			
ста повреждения								
Спуск воды из трубопровода	1	1	2	2	2			
Вскрытие канала, откачка воды из трассы, вырез-	2	4	8	12	16			
ка поврежденной трубы								
Подгонка новой трубы (заплаты) одним-двумя	1	2	5	8/4	12/6			
сварщиками								
Заполнение участка сети	1	1	2	4	8			
Включение и восстановление тепловой системы	1	2	4	4	4			
Всего	12	20	34	44/40	58/52			

Из таблицы 1.31 видно, что на ликвидацию повреждения на трубопроводе диаметром 100-200 мм затрачивается 12 ч, а при диаметре трубопровода 500-700 мм времени потребуется почти в три раза больше, и оно составит 34 ч.

В связи с этим в эксплуатируемых ныне и проектируемых тепловых сетях систем централизованного теплоснабжения при подземной их прокладке предусматривается резервная подача теплоты в зависимости от расчетной температуры наружного воздуха для отопления трубопроводов диаметрами от 300 мм и выше. Считается, что лимит времени для устранения повреждений тепло-

проводов меньшего диаметра достаточен и опасность замораживания систем отопления не возникает.

Определение лимита времени, требуемого на восстановление работоспособности нерезервируемого элемента, отказ которого возможен при любой климатической ситуации отопительного периода, приведен в таблице 1.32.

Таблица 1.32 – Лимит времени на производство аварийно-восстановительных работ в зависимости от погодных условий

Наружная расчетная	Коэф-		Текущие	значения нару	ужной темпер	оатуры, °С
температура для	фициент	Порометр				
проектирования си-	аккуму-	Параметр	-50	-30	-10	0
стемы отопления,°С	ляции, β					
-50	75	tB,°C	10	12,4	14,8	16,0
-30	73	чел час	7,3	9,1	13,8	21,0
-40	70	tв,°С	-	11,5	14,5	16,0
-4 0	70	чел час	-	10,2	14,0	19,6
-30	65	tв,°С	-	10,0	14,0	16,0
-30	0.5	чел час	-	12,2	14,6	18,2
-20	55 <u>tв,°С</u> чел час	tв, [◦] C	-	-	13,0	16,0
-20		-	-	15,3	15,4	

Из таблицы 1.32 следует, что высокая оперативность аварийно-восстановительных работ необходима в течение большей части отопительного периода.

16.4 Возможные способы оперативной локализации и устранения аварийных ситуаций в системах теплоснабжения и отопления

С развитием централизованного теплоснабжения, усложнением схем тепловых сетей актуальной стала задача выявления поврежденного участка в сложной сети с целью быстрейшей локализации аварии, а затем уже уточнения места повреждения для проведения ремонтных работ.

Факт достаточно крупного повреждения, как правило, устанавливается по резкому увеличению расхода подпиточной воды, понижению давления на коллекторах, существенной разнице расхода воды в подающем и обратном трубопроводах. В соответствии с «Инструкцией по эксплуатации тепловых сетей», в случае резкого возрастания подпитки необходимо установить контроль над ее величиной. Одновременно производят внешний осмотр сети с целью выявления повреждения. Параллельно на станции проверяется герметичность теплофикационного оборудования и коллекторов котельной.

Если при внешнем осмотре сети и проверке герметичности место утечки обнаружить не удается, то проверка осуществляется путем поочередного отключения от сети абонентских систем, квартальных и магистральных участков тепловых сетей и одновременное наблюдение за величиной подпитки.

При поиске повреждений в кольцевой сети таким методом необходимо сначала перестроить ее на радиальную. Это увеличивает время обнаружения с момента возникновения повреждения до его локализации.

Чтобы обеспечить возможность более быстрого выявления аварийной магистрали по показаниям расходомеров, установленных на выводах котельной, рекомендуется секционируемая схема эксплуатации тепловых сетей.

Непосредственно место повреждения выявляется шурфовкой.

В целом эффективность способов нахождения повреждений, применяемых в отечественной практике эксплуатации городских тепловых сетей, довольно низкая. Практически аварийный участок чаще всего устанавливается по появлению воды в камерах, выходу сетевой воды на поверхность земли или по выходу паров из теплофикационных камер.

В настоящее время разработан ряд более совершенных методов обнаружения аварий в тепловых сетях (метод автоматической сигнализации, гидролокации, контролируемых давлений; методы, основанные на применении в условиях тепловых сетей современных АСУ). Но из-за недостаточного финансирования они не стали массовым технологическим базисом для создания постоянно функционирующих систем дистанционного выявления и локализации участков и мест утечек сетевой воды в современных действующих системах теплоснабжения.

В результате аварий на тепловых сетях и источниках возможны наиболее массовые и серьезные по своему характеру нарушения теплового режима, сопровождаемые значительными материальными и моральными издержками. Разработку схемных решений систем отопления, более устойчивых к экстремальным ситуациям, следует вести с учетом возможных нарушений гидравлических и тепловых режимов в системах теплоснабжения.

16.5 Потенциальные угрозы в системах теплоснабжения

Согласно результатам эксплуатации объектов теплоснабжения сельского населенного пункта с. Колташево (таблица 1.33) потенциальные угрозы, напрямую влияющие на обеспечение надежности систем теплоснабжения, отсутствуют.

Таблица 1.33 – Потенциальные угрозы в системах теплоснабжения

$N_{\underline{0}}$	Объект теплоснабжения	Статус (наличие / от-	Мероприятия по
		сутствуют)	нивелированию
			выявленных
			угроз
1	На источниках комбинированной выработки	-	не требуются
	тепловой и электрической энергии		
2	На котельных		
2.1	котельная с. Колташево	отсутствуют	не требуются
3	На тепловых сетях		
3.1	котельная с. Колташево	отсутствуют	не требуются

Мероприятия на устранение потенциальных угроз, напрямую влияющих на обеспечение надежности систем теплоснабжения, не требуются.

Мероприятия по нивелированию выявленных угроз не требуются.

Инвестиции, необходимых для устранения вышеуказанных угроз, не требуются.

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ

ГЛАВА 1. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения

Изменения в функциональной структуре теплоснабжения поселения за период, предшествующий актуализации схемы теплоснабжения, отсутствуют.

Часть 1. Функциональная структура теплоснабжения

1.1.1 Зоны действия производственных котельных

Производственные котельные на территории сельского населенного пункта с. Колташево отсутствуют.

1.1.2 Зоны действия индивидуального теплоснабжения

К существующим зонам действия индивидуальных источников тепловой энергии относятся большая часть территории с. Колташево с индивидуальной жилой застройкой/

Графические материалы с зонами действия индивидуальных источников теплоснабжения приведены в Приложении.

Основным видом топлива индивидуальных источников теплоснабжения является природный газ, бурый уголь и дрова.

1.1.3 Зоны действия отопительных котельных

Зона действия системы теплоснабжения центральной котельной расположенной по адресу ул. Камшилова д.1в, с. Колташево охватывает территорию, являющуюся частью кадастрового квартала 45:08:012901, расположенную между ул. Пушкина и ул. Почтовая, ул. Камшилова и ул. Комсомольская. К системе теплоснабжения подключены здания дома культуры, школы, детского сада и сельсовета. Наиболее удаленный потребитель — ДК. Зона действия источника тепловой энергии — центральной котельной — совпадает с зоной действия системы теплоснабжения.

В перспективе зона действия центральной котельной остается неизменной на расчетный период до 2043 г.

Графические материалы с обозначением зоны действия центральной котельной с. Колташево приведены в Приложении.

Центральная котельная с. Колташево (ул. Камшилова д.1в) и ее тепловые сети находятся на балансе Кетовского муниципального округа. Объекты систем теплоснабжения сельского населенного пункта с. Колташево расположены в зоне эксплуатационной ответственности компании ООО «Уют».

Часть 2. Источники тепловой энергии

1.2.1 Структура основного оборудования

Характеристика центральной котельной с. Колташево приведена в таблице 2.1.

Таблица 2.1 – Характеристика котельной с. Колташево

$N_{\underline{0}}$	Объект	Целевое	Назначе-	Обеспечиваемый	Надежность	Категория
П		назначе-	ние	вид теплопо-	отпуска теп-	обеспечивае-
П		ние		требления	лоты потре-	мых потреби-
					бителям	телей
1	Котельная	централь-	отопи-	отопланна	первой кате-	ртород
	с. Колташево	ная	тельная	отопление	гории	вторая

Таблица 2.2 – Основные характеристики котлов источника теплоснабжения

The single 2.2 a sing sing in printing the sing single sin					
Наименование источника тепловой энергии	Марка и количе- ство котлов	Топливо основное, (резервное)	Температурный график теплоносителя (в наружной сети)	Техническое состояние	
Центральная котельная с. Колташево	2× Ferroli Prextherm RSW 300	природный газ (ди- зельное топливо)	75–35°C	Удовл.	

Стальной жаротрубный котел Prextherm RSW 300 предназначен для работы на газообразном или жидком топливе с использованием вентиляторных горелок. Котлы оборудованы передними дверками, оснащенными петлями, которые позволяют изменять сторону открытия котла, а также регулируются по высоте и глубине. Корпус котла изолирован толстым листом стекловаты, покрытой износостойким материалом. Пульт управления, с предварительно выполненной электроразводкой, размещен наверху котла и позволяет эксплуатировать котел в автоматическом режиме.

Стальной жаротрубный котел Prextherm RSW 300 имеет следующие особенности:

- трубный пучок расположен над камерой сгорания, таким образом что продукты сгорания всегда поступают в «горячее» окружение, что предотвращает риск образования конденсата;
- горелка не центрована с камерой сгорания, а несколько смещена вниз. Это помогает реверсированию пламени, уменьшает аэродинамическое сопротивление по газовому тракту, и как следствие, расширяет рабочий диапазон генератора;
- камера сгорания является полностью охлаждаемой (в том числе с тыла), что повышает поверхность теплообмена и улучшает распределение тепловой нагрузки по стенкам;
- стальной корпус полностью изолирован слоем стекловаты толщиной 80 мм, покрытой, в свою очередь, слоем прочного, износостойкого материала;
- новые турбулизаторы, обеспечивают улучшение теплообмена с продуктами сгорания с одновременным снижением аэродинамических потерь по сравнению с другими решениями;
 - панель управления оборудована климатическим терморегулятором.

Таблица 2.3 – Техническая характеристика водогрейного котла Prextherm RSW 300

Характеристика	Ед. изм.	Параметр
1	2	3
Мощность	кВт	300
Диапазон тепловой мощности (мин макс.)	кВт	196 - 300
Способ установки		напольный
Тип камеры сгорания		открытая
Тип		одноконтурный (только отопление)
Площадь обогрева	M^2	3000
Вид теплоносителя		вода
1	2	3
Macca	КГ	455
Габариты:		
- длина	MM	1303
- ширина	MM	940
- высота	MM	1071
вид топлива		природный газ, сжиженный газ, дизель
отвод продуктов сгорания		дымоход
Подающий и обратный трубопровод	MM	DN 65
Рабочее давление	бар	6
Аэродинамическое сопротивление камеры	145an	2.2
сгорания	мбар	3,3
Полная емкость котла	Л	274
Питание	В	однофазное (220)
		Падение давления газа
Системы защиты		Перегрев воды
Системы защиты		Погасание пламени
		Отсутствие тяги

Таблица 2.4 – Характеристика сетевого оборудования установленного в центральной котельной

№ пп	Наименование	Тип насоса	Кол-во штук	Мощность, кВт
1.	Сетевой насос (Цирку- ляционный)	CALPEDA NM 40/16 B/B, KM65-50-125	2	3,3
2.	Сетевой контур (Автоматная насосная станция)	SR70/50C-24	1	1,1

1.2.2 Параметры установленной тепловой мощности источника тепловой энергии, в том числе теплофикационного оборудования и теплофикационной установки

Таблица 2.5 – Параметры установленной тепловой мощности котлов центральной котельной

Наименование источника тепловой	Морко и колимоство колиов	Установленная мощность,
энергии	Марка и количество котлов	Гкал/ч
Центральная котельная с. Колташево	2×Ferroli Prextherm RSW	0.516
	300	0,516

1.2.3 Ограничения тепловой мощности и параметры располагаемой тепловой мощности

Таблица 2.6 – Ограничения тепловой мощности и параметры располагаемой тепловой мощности

Наименование источника тепловой энергии	Марка и коли- чество котлов	Срок эксплуа- тации, г	Ограничения тепловой мощности, Гкал/ч	Располагаемая тепловая мощность, Гкал/ч
Центральная ко-	2×Ferroli			
тельная	Prextherm	6	0,026	0,490
с. Колташево	RSW 300			

1.2.4 Объем потребления тепловой энергии (мощности) на собственные и хозяйственные нужды теплоснабжающей организации в отношении источников тепловой энергии и параметры тепловой мошности нетто

Таблица 2.7 – Параметры установленной тепловой мощности нетто

Наименование источника тепловой энергии	Марка и количе- ство котлов	Затраты тепловой мощности на собственные и хозяйственные ные нужды, Гкал/ч	Мощность источника тепловой энергии нетто, Гкал/ч
Центральная к	- 2×Ferroli		
тельная	Prextherm RSW	0,008	0,482
с. Колташево	300		

1.2.5 Сроки ввода в эксплуатацию основного оборудования, год последнего освидетельствования при допуске к эксплуатации после ремонта, год продления ресурса и мероприятия по продлению ресурса

Сроки ввода в эксплуатацию оборудования котельной представлены в таблице 2.8. Продление ресурса не требуется.

Таблица 2.8 – Сроки ввода в эксплуатацию теплофикационного оборудования

Наименование источника		Марка и количество	Год ввода в	Год последнего освиде-
тепловой энергии		котлов	эксплуатацию	тельствования
Центральная с. Колташево	котельная	2×Ferroli Prextherm RSW 300	2008	2023

1.2.6 Схемы выдачи тепловой мощности, структура теплофикационных установок

Схема выдачи тепловой мощности центральной котельной с. Колташево приведена на рисунке 2.1.

Источники тепловой энергии Сельского населенного пункта с. Колташево не являются источниками комбинированной выработки тепловой и электрической энергии.

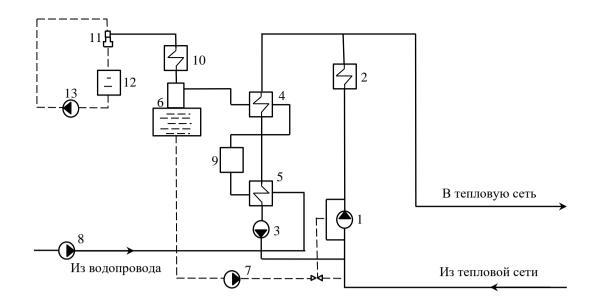


Рисунок 2.1 — Принципиальная тепловая схема котельной с водогрейными котлами: 1 - сетевой насос; 2 - водогрейный котел; 3 - рециркуляционный насос; 4 - подогреватель подпиточной воды; 5 - подогреватель водопроводной воды; 6 - вакуумный деаэратор; 7 - подпиточный насос и регулятор подпитки; 8 - насос водопроводной воды; 9 - оборудование химводоподготовки; 10 - охладитель выпара; 11 - вакуумный водоструйный эжектор; 12 — бак газоотделитель эжектора; 13 - эжекторный насос

1.2.7 Способы регулирования отпуска тепловой энергии от источников тепловой энергии с обоснованием выбора графика изменения температур и расхода теплоносителя в зависимости от температуры наружного воздуха

Регулирование отпуска теплоты – центральное (на источнике теплоты) качественное – изменение в зависимости от температуры наружного воздуха, температуры теплоносителя на источнике теплоты, по расчетному температурному графику 75–35°C.

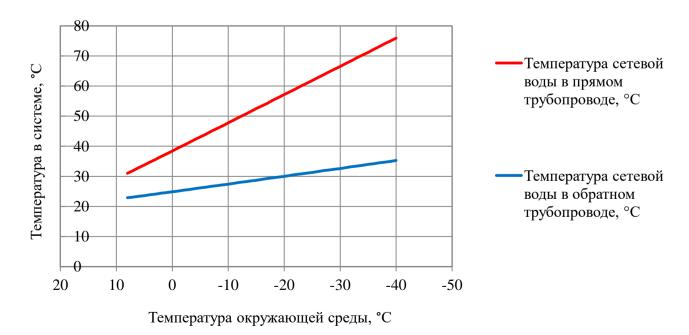


Рисунок 2.2 – График изменения температур теплоносителя

График изменения температур теплоносителя (рисунок 2.2) выбран на основании климатических параметров холодного времени года на территории г. Курган РФ СП 131.13330.2012 «Строительная климатология» и справочных данных температуры воды, подаваемой в отопительную систему, и сетевой – в обратном трубопроводе по температурному графику 75–35°С.

1.2.8 Среднегодовая загрузка оборудования

Таблица 2.9 – Среднегодовая загрузка оборудования

Наименование	Марка и количе-	Располагаемая	Нагрузка, в т.ч	Среднегодовая загруз-
источника	ство котлов	мощность, Гкал/ч	потери, Гкал/ч	ка оборудования, %
Центральная	2×Ferroli			
котельная	Prextherm RSW	0,49	0,3055	62,35
с. Колташево	300			

1.2.9 Способы учета тепла, отпущенного в тепловые сети

Учет произведенного тепла ведется расчетным способом на основании расхода топлива.

1.2.10 Статистика отказов и восстановлений оборудования источников тепловой энергии

Отказы оборудования источников тепловой энергии к августу 2024 г. отсутствуют.

1.2.11 Предписания надзорных органов по запрещению дальнейшей эксплуатации источника тепловой энергии

Предписания надзорных органов по запрещению дальнейшей эксплуатации источника тепловой энергии отсутствуют.

1.2.12 Перечень источников тепловой энергии и (или) оборудования (турбоагрегатов), входящего в их состав (для источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), которые отнесены к объектам, электрическая мощность которых поставляется в вынужденном режиме в целях обеспечения надежного теплоснабжения потребителей

Источники тепловой энергии, функционирующие в режиме комбинированной выработки электрической и тепловой энергии, электрическая мощность которых поставляется в вынужденном режиме в целях обеспечения надежного теплоснабжения потребителей, на территории сельского населенного пункта с. Колташево отсутствуют.

Часть 3. Тепловые сети, сооружения на них и тепловые пункты

Изменения в характеристиках тепловых сетей и сооружений на них по подпунктам 1.3.1 - 1.3.22 Части 3. Тепловые сети, сооружения на них, зафиксированных за период, предшествующий актуализации схемы теплоснабжения, отсутствуют.

Раздел актуализирован с учетом отсутствия ценовых зон теплоснабжения и находящихся в них тепловых сетей.

1.3.1 Описание структуры тепловых сетей от каждого источника тепловой энергии, от магистральных выводов до центральных тепловых пунктов (если таковые имеются) или до ввода в жилой квартал или промышленный объект с выделением сетей горячего водоснабжения

Структурно тепловая сеть муниципальной котельной имеет один магистральный вывод в двухтрубном нерезервируемом исполнении, выполненный надземной прокладкой на низких опорах с теплоизоляцией, оканчивающийся секционирующей арматурой в зданиях потребителей. Наиболее удаленный потребитель — Дом Культуры.

Центральные тепловые пункты тепловых сетей в Сельском населенном пункте с. Колташево отсутствуют. Вводы магистральных сетей от котельной в промышленные объекты не имеются.

1.3.2 Карты (схемы) тепловых сетей в зонах действия источников тепловой энергии в электронной форме и (или) на бумажном носителе

Схемы тепловых сетей в зонах действия источников тепловой энергии приведены в приложении.

1.3.3 Параметры тепловых сетей, включая год начала эксплуатации, тип изоляции, тип компенсирующих устройств, тип прокладки, краткую характеристику грунтов в местах прокладки с выделением наименее надежных участков, определением их материальной характеристики и подключенной тепловой нагрузки потребителей, подключенных к таким участкам

Параметры тепловых сетей приведены в таблицах 2.10.

Таблица 2.10 – Параметры тепловой сети центральной котельной с. Колташево

№ пп	Параметр	Характеристика, значение
1.	Наружный диаметр, мм	200-165
2.	Материал	сталь
3.	Схема исполнения тепловой сети	двухтрубная
4.	Конструкция	тупиковая
5.	Степень резервируемости	нерезервированная
6.	Количество магистральных выводов	1
7.	Общая протяженность сетей, п.м	165
8.	Высота расположения тепловых сетей, м	0,5
9.	Год начала эксплуатации	2008
10.	Тип изоляции	минеральная вата; рубероид
11.	Тип прокладки	воздушная на низких опорах
12.	Характеристика грунта	песчано-глинистый
13.	Тип компенсирующих устройств	П-образный компенсатор
14.	Наименее надежный участок	магистральный
15.	Материальная характеристика, м ²	32,40
16.	Подключенная тепловая нагрузка, Гкал/ч	0,325

1.3.4 Описание типов и количества секционирующей и регулирующей арматуры на тепловых сетях

Секционирующие задвижки из низколегированной стали, чугуна и регулирующие дроссельные шайбы размещены в узлах присоединения распределительных сетей потребителей к магистральным тепловым сетям непосредственно в индивидуальных тепловых пунктах зданий потребителей, а также тепловых камер, по одной на каждый (прямой и обратный) трубопроводы.

Таблица 2.11 – Перечень запорной арматуры

Мо пп	Vанарин й ниамотр мм	Количество установл	енных задвижек, шт.
№ пп	Условныи диаметр, мм	Чугунные	Стальные
1.	200	4	16

1.3.5 Описание типов и строительных особенностей тепловых пунктов, тепловых камер и павильонов

Тепловые камеры и павильоны систем теплоснабжения на территории сельского населенного пункта с. Колташево отсутствуют.

1.3.6 Описание графиков регулирования отпуска тепла в тепловые сети с анализом их обоснованности

График изменения температур теплоносителя (таблица 2.12) выбран на основании климатических параметров холодного времени года на территории г. Курган РФ СП 131.13330.2012 «Строительная климатология» и справочных данных температуры воды, подаваемой в отопительную систему, и сетевой – в обратном трубопроводе по температурному графику 75–35 °C.

Таблица 2.12 – График изменения температур теплоносителя

Температура се-		Расчетная температура наружного воздуха, °С									
тевой воды	10	5	0	-5	-10	-15	-20	-25	-30	-35	-37
В прямом трубо- проводе, °С	31,00	33,80	38,40	43,10	47,80	52,50	57,20	61,80	66,50	71,20	75,00
В обратном тру- бопроводе, °С	22,90	23,60	24,90	26,20	27,40	28,70	30,00	31,30	32,60	34,00	35,00

1.3.7 Фактические температурные режимы отпуска тепла в тепловые сети и их соответствие утвержденным графикам регулирования отпуска тепла в тепловые сети

Фактические температурные режимы отпуска тепла в тепловые сети соответствуют утвержденным графикам регулирования отпуска тепла в тепловые сети и обеспечиваются путем соответствия расхода количества топлива температуре окружающей среды.

1.3.8 Гидравлические режимы тепловых сетей и пьезометрические графики тепловых сетей

Для магистральных водяных закрытых тепловых сетей сельского населенного пункта с. Колташево без горячего водоснабжения предусмотрен расчетный гидравлический режим — по расчетным расходам сетевой воды в отопительный период.

Пьезометрический график по магистрали до самого удаленного потребителя — Дома Культуры — приведен на рисунке 2.3.



Рисунок 2.3 – Пьезометрический график тепловой сети центральной котельной до самого удаленного потребителя – ДК с. Колташево

1.3.9 Статистика отказов тепловых сетей (аварий, инцидентов) за последние 5 лет

Существенные отказы тепловых сетей (аварии, инциденты) за последние 5 лет в сельском населенном пункте с. Колташево отсутствуют.

1.3.10 Статистика восстановлений (аварийно-восстановительных ремонтов) тепловых сетей и среднее время, затраченное на восстановление работоспособности тепловых сетей, за последние 5 лет.

Отказы тепловых сетей за последние 5 лет отсутствуют, среднее время, затраченное на восстановление работоспособности тепловых сетей не превышает 8 часов.

1.3.11 Описание процедур диагностики состояния тепловых сетей и планирования капитальных (текущих) ремонтов

С целью диагностики состояния тепловых сетей проводятся гидравлические и температурные испытания теплотрасс, а также на тепловые потери.

Гидравлическое испытание тепловых сетей производят дважды: сначала проверяют прочность и плотность теплопровода без оборудования и арматуры, после весь теплопровод, который готов к эксплуатации, с установленными грязевиками, задвижками, компенсаторами и остальным оборудованием. Повторная проверка нужна потому, что при смонтированном оборудовании и арматуре тяжелее проверить плотность и прочность сварных швов.

В случаях, когда при испытании теплопроводов без оборудования и арматуры имеет место падение давления по приборам, значит, имеющиеся сварные швы неплотные (естественно, если в самих трубах нет свищей, трещин и пр.). Падение давления при испытании трубопроводов с установленным оборудованием и арматурой, возможно, свидетельствует, что помимо стыков выполнены с дефектами еще сальниковые уплотнения или фланцевые соединения.

При предварительном испытании проверяется на плотность и прочность не только сварные швы, но и стенки трубопроводов, т.к. бывает, что трубы имеют трещины, свищи и прочие заводские дефекты. Испытания смонтированного трубопровода должны выполняться до монтажа теплоизоляции. Помимо этого трубопровод не должен быть засыпан или закрыт инженерными конструкциями. Когда трубопровод сварен из бесшовных цельнотянутых труб, он может предъявляться к испытанию уже изолированным, но только с открытыми сварными стыками.

При окончательном испытании подлежат проверке места соединения отдельных участков (в случаях испытания теплопровода частями), сварные швы грязевиков и сальниковых компенсаторов, корпуса оборудования, фланцевые соединения. Во время проверки сальники должны быть уплотнены, а секционные задвижки полностью открыты.

При гидравлическом испытании тепловых сетей последовательность проведения работ такая:

- проводят очистку теплопроводов;
- устанавливают манометры, заглушки и краны;
- подключают воду и гидравлический пресс;
- заполняют трубопроводы водой до необходимого давления;
- проводят осмотр теплопроводов и помечают места, где обнаружены дефекты;
- устраняют дефекты;
- производят второе испытание;
- отключают от водопровода и производят спуск воды из труб;
- снимают манометры и заглушки.

Для заполнения трубопроводов водой и хорошего удаления из труб воздуха водопровод присоединяют к нижней части теплопровода. Возле каждого воздушного крана необходимо выставить дежурного. Сначала через воздушники поступает только воздух, потом воздушно-водяная

смесь и, наконец, только вода. По достижении выхода только воды кран перекрывается. Далее кран еще два-три раза периодически открывают для полного выпуска оставшейся части воздуха с верхних точек. Перед началом наполнения тепловой сети все воздушники необходимо открыть, а дренажи закрыть.

Испытание проводят давлением, равном рабочему с коэффициентом 1,25. Под рабочим понимают максимальное давление, которое может возникнуть на данном участке в процессе эксплуатации.

При случаях испытания теплопровода без оборудования и арматуры давление поднимают до расчетного и выдерживают его на протяжении 10 мин, контролируя при этом падение давления, после снижают его до рабочего, проводят осмотр сварных соединений и обстукивают стыки. Испытания считают удовлетворительными, если отсутствует падение давления, нет течи и потения стыков.

Испытания с установленным оборудованием и арматурой проводят с выдержкой в течение 15 мин, проводят осмотр фланцевых и сварных соединений, арматуры и оборудования, сальниковых уплотнений, после давление снижают до рабочего. Испытания считают удовлетворительными, если в течение 2 ч падение давления не превышает 10%. Испытательное давление проверяет не только герметичность, но и прочность оборудования и трубопровода.

После испытания воду необходимо удалять из труб полностью. Как правило, вода для испытаний не проходит специальную подготовку и может снизить качество сетевой воды и быть причиной коррозии внутренних поверхностей труб.

Температурные испытания тепловых сетей на максимальную температуру теплоносителя, находящихся в эксплуатации длительное время и имеющих ненадежные участки проводятся после ремонта и предварительного испытания этих сетей на прочность и плотность, но не позднее чем за 3 недели до начала отопительного периода.

Температурным испытаниям подвергаться вся сеть от источника тепловой энергии до индивидуальных тепловых пунктов потребителей. Температурные испытания проводятся при устойчивых суточных плюсовых температурах наружного воздуха.

Началу испытания тепловой сети на максимальную температуру теплоносителя должен предшествовать прогрев тепловой сети при температуре воды в подающем трубопроводе 100 °C. Продолжительность прогрева составляет порядка двух часов.

Перед началом испытания производится расстановка персонала в пунктах наблюдения и по трассе тепловой сети.

В предусмотренный программой срок на источнике тепловой энергии начинается постепенное повышение температуры воды до установленного максимального значения при строгом контроле за давлением в обратном коллекторе сетевой воды на источнике тепловой энергии и величиной подпитки (дренажа).

Заданная максимальная температура теплоносителя поддерживается постоянной в течение установленного программой времени (не менее 2 ч), а затем плавно понижается до 70-80 °C.

Скорость повышения и понижения температуры воды в подающем трубопроводе выбирается такой, чтобы в течение всего периода испытания соблюдалось заданное давление в обратном коллекторе сетевой воды на источнике тепловой энергии. Поддержание давления в обратном коллекторе сетевой воды на источнике тепловой энергии при повышении температуры первоначально должно проводиться путем регулирования величины подпитки, а после полного прекращения

подпитки в связи с увеличением объема сетевой воды при нагреве путем дренирования воды из обратного коллектора.

С момента начала прогрева тепловой сети и до окончания испытания во всех пунктах наблюдения непрерывно (с интервалом 10 мин) ведутся измерения температур и давлений сетевой воды с записью в журналы.

Руководитель испытания по данным, поступающим из пунктов наблюдения, следит за повышением температуры сетевой воды на источнике тепловой энергии и в тепловой сети и прохождением температурной волны по участкам тепловой сети.

Для своевременного выявления повреждений, которые могут возникнуть в тепловой сети при испытании, особое внимание должно уделяться режимам подпитки и дренирования, которые связаны с увеличением объема сетевой воды при ее нагреве. Поскольку расходы подпиточной и дренируемой воды в процессе испытания значительно изменяются, это затрудняет определение по ним момента появления неплотностей в тепловой сети. Поэтому в период неустановившегося режима необходимо анализировать причины каждого резкого увеличения расхода подпиточной воды и уменьшения расхода дренируемой воды.

Нарушение плотности тепловой сети при испытании может быть выявлено с наибольшей достоверностью в период установившейся максимальной температуры сетевой воды. Резкое отклонение величины подпитки от начальной в этот период свидетельствует о появлении неплотности в тепловой сети и необходимости принятия срочных мер по ликвидации повреждения.

Специально выделенный персонал во время испытания должен объезжать и осматривать трассу тепловой сети и о выявленных повреждениях (появление парения, воды на трассе сети и др.) немедленно сообщать руководителю испытания. При обнаружении повреждений, которые могут привести к серьезным последствиям, испытание должно быть приостановлено до устранения этих повреждений.

Системы теплопотребления, температура воды в которых при испытании превысила допустимые значения 95 °C должны быть немедленно отключены.

Измерения температуры и давления воды в пунктах наблюдения заканчиваются после прохождения в данном месте температурной волны и понижения температуры сетевой воды в подающем трубопроводе до 100 °C.

Испытание считается законченным после понижения температуры воды в подающем трубопроводе тепловой сети до 70-80 °C.

Испытания по определению тепловых потерь в тепловых сетях проводятся один раз в пять лет на с целью разработки энергетических характеристик и нормирования эксплуатационных тепловых потерь, а также оценки технического состояния тепловых сетей.

Осуществление разработанных гидравлических и температурных режимов испытаний производится в следующем порядке:

включаются расходомеры на линиях сетевой и подпиточной воды и устанавливаются термометры на циркуляционной перемычке конечного участка кольца, на выходе трубопроводов из теплоподготовительной установки и на входе в нее;

устанавливается определенный расчетом расход воды по циркуляционному кольцу, который поддерживается постоянным в течение всего периода испытаний;

устанавливается давление в обратной линии испытываемого кольца на входе ее в теплоподготовительную установку;

устанавливается температура воды в подающей линии испытываемого кольца на выходе из теплоподготовительной установки;

Отклонение расхода сетевой воды в циркуляционном кольце не должно превышать $\pm 2~\%$ расчетного значения.

Температура воды в подающей линии должна поддерживаться постоянной с точностью $\pm 0.5~^{\circ}\mathrm{C}$.

Определение тепловых потерь при подземной прокладке сетей производится при установившемся тепловом состоянии, что достигается путем стабилизации температурного поля в окружающем теплопроводы грунте, при заданном режиме испытаний.

Показателем достижения установившегося теплового состояния грунта на испытываемом кольце является постоянство температуры воды в обратной линии кольца на входе в теплоподготовительную установку в течение 4 ч.

Во время прогрева грунта измеряются расходы циркулирующей и подпиточной воды, температура сетевой воды на входе в теплоподготовительную установку и выходе из нее и на перемычке конечного участка испытываемого кольца. Результаты измерений фиксируются одновременно через каждые 30 мин.

Продолжительность периода достижения установившегося теплового состояния кольца существенно сокращается, если перед испытанием горячее водоснабжение присоединенных к испытываемой магистрали потребителей осуществлялось при температуре воды в подающей линии, близкой к температуре испытаний.

Начиная с момента достижения установившегося теплового состояния во всех намеченных точках наблюдения устанавливаются термометры и измеряется температура воды. Запись показаний термометров и расходомеров ведется одновременно с интервалом 10 мин. Продолжительность основного режима испытаний должна составлять не менее 8 часов.

На заключительном этапе испытаний методом "температурной волны" уточняется время — «продолжительность достижения установившегося теплового состояния испытываемого кольца». На этом этапе температура воды в подающей линии за 20-40 мин повышается на 10-20°С по сравнению со значением температуры испытания и поддерживается постоянной на этом уровне в течение 1 ч. Затем с той же скоростью температура воды понижается до значения температуры испытания, которое и поддерживается до конца испытаний.

Расход воды при режиме "температурной волны" остается неизменным. Прохождение "температурной волны" по испытываемому кольцу фиксируется с интервалом 10 мин во всех точках наблюдения, что дает возможность определить фактическую продолжительность пробега частиц воды но каждому участку испытываемого кольца.

Испытания считаются законченными после того, как «температурная волна» будет отмечена в обратной линии кольца на входе в теплоподготовительную установку.

Суммарная продолжительность основного режима испытаний и периода пробега "температурной волны" составляет удвоенное время продолжительности достижения установившегося теплового состояния испытываемого кольца плюс 10-12 ч.

В результате испытаний определяются тепловые потери для каждого из участков испытываемого кольца отдельно по подающей и обратной линиям.

1.3.12 Описание периодичности и соответствия техническим регламентам и иным обязательным требованиям процедур летних ремонтов с параметрами и методами испытаний (гидравлических, температурных, на тепловые потери) тепловых сетей

Под термином «летний ремонт» имеется в виду плановопредупредительный ремонт, проводимый в межотопительный период. В отношении периодичности проведения так называемых летних ремонтов, а также параметров и методов испытаний тепловых сетей требуется следующее:

- 1. Техническое освидетельствование тепловых сетей должно производиться не реже 1 раза в 5 лет в соответствии с п.2.5 МДК 4 02.2001 «Типовая инструкция по технической эксплуатации тепловых сетей систем коммунального теплоснабжения»;
- 2. Оборудование тепловых сетей в том числе тепловые пункты и системы теплопотребления до проведения пуска после летних ремонтов должно быть подвергнуто гидравлическому испытанию на прочность и плотность, а именно: элеваторные узлы, калориферы и водоподогреватели отопления давлением 1,25 рабочего, но не ниже 1 МПа (10 кгс/см²), системы отопления с чугунными отопительными приборами давлением 1,25 рабочего, но не ниже 0,6 МПа (6 кгс/см²), а системы панельного отопления давлением 1 МПа (10 кгс/см²) (п.5.28 МДК 4 02.2001);
- 3. Испытанию на максимальную температуру теплоносителя должны подвергаться все тепловые сети от источника тепловой энергии до тепловых пунктов систем теплопотребления, данное испытание следует проводить, как правило, непосредственно перед окончанием отопительного сезона при устойчивых суточных плюсовых температурах наружного воздуха в соответствии с п.1.3, 1.4 РД 153-34.1-20.329-2001 «Методические указания по испытанию водяных тепловых сетей на максимальную температуру теплоносителя».
- 1.3.13 Описание нормативов технологических потерь (в ценовых зонах теплоснабжения плановых потерь, определяемых в соответствии с методическими указаниями по разработке схем теплоснабжения) при передаче тепловой энергии (мощности) и теплоносителя, включаемых в расчет отпущенных тепловой энергии (мощности) и теплоносителя

Пункт актуализирован с учетом отсутствия ценовых зон теплоснабжения.

Технологические потери при передаче тепловой энергии складываются из тепловых потерь через тепловую изоляцию трубопроводов, а также с утечками теплоносителя. Расчеты нормативных значений технологических потерь теплоносителя и тепловой энергии производятся в соответствии с приказом Минэнерго № 325 от 30 декабря 2008 года «Об утверждении порядка определения нормативов технологических потерь при передаче тепловой энергии, теплоносителя».

Нормативы технологических потерь по тепловым сетям сельского населенного пункта с. Колташево составляют 0,019 Гкал/ч.

1.3.14 Оценка фактических потерь тепловой энергии и теплоносителя при передаче тепловой энергии и теплоносителя по тепловым сетям за последние 3 года

Таблица 2.13 – Существующие и ретроспективные потери тепловой энергии при ее передаче по тепловым сетям с. Колташево

Источник теп- лоснабжения	Параметр	Рет	роспектив	Существую- щие	
лоснаожения	Год	2020 г	2021 г.	2022 г.	2023 г.
	Потери тепловой энергии при её передаче по тепловым сетям, Гкал/ч	0,019	0,019	0,019	0,019
Центральная котельная	Потери теплопередачей ч/з тепло- изоляционные конструкции тепло- проводов, Гкал/ч	0,0190	0,0190	0,0190	0,0190
	Потери теплоносителя, Гкал/ч	0,00004	0,00004	0,00004	0,00004

Значительные изменения потерь тепловой энергии и теплоносителя при ее передаче по тепловым сетям по сравнению со Схемой теплоснабжения 2014 г. отсутствуют.

1.3.15 Предписания надзорных органов по запрещению дальнейшей эксплуатации участков тепловой сети и результаты их исполнения

Предписаний надзорных органов по запрещению дальнейшей эксплуатации участков тепловой сети за последние 3 года не имеется.

1.3.16 Описание наиболее распространенных типов присоединений теплопотребляющих установок потребителей к тепловым сетям, определяющих выбор и обоснование графика регулирования отпуска тепловой энергии потребителям

Все присоединения теплопотребляющих установок потребителей к тепловым сетям осуществляется по зависимому (непосредственному) присоединению системы отопления без смешения.

1.3.17 Сведения о наличии коммерческого приборного учета тепловой энергии, отпущенной из тепловых сетей потребителям, и анализ планов по установке приборов учета тепловой энергии и теплоносителя

Приборы коммерческого учета тепловой энергии, отпущенной из тепловых сетей потребителям, отсутствуют. В соответствие с Федеральным законом об энергосбережении планируется поочередная установка приборов учета тепловой энергии и теплоносителя в общественных зданиях.

1.3.18 Анализ работы диспетчерских служб теплоснабжающих (теплосетевых) организаций и используемых средств автоматизации, телемеханизации и связи

Диспетчерские службы теплоснабжающих (теплосетевых) организаций, средства телемеханизации, автоматизации и связи отсутствуют.

1.3.19 Уровень автоматизации и обслуживания центральных тепловых пунктов, насосных станций

Центральные тепловые пункты и насосные станции на территории сельского населенного пункта с. Колташево отсутствуют.

1.3.20 Сведения о наличии защиты тепловых сетей от превышения давления

Защиты тепловых сетей от превышения давления автоматическая: с применением линий перепуска.

1.3.21 Перечень выявленных бесхозяйных тепловых сетей и обоснование выбора организации, уполномоченной на их эксплуатацию

В настоящий момент имеется признание права муниципальной собственности на тепловые сети за Кетовским муниципальным округом.

Часть 4. Зоны действия источников тепловой энергии

Существующая зона действия источника тепловой энергии совпадает с зоной действия тепловых сетей на территории сельского населенного пункта с. Колташево.

Границы зон действия центральной котельной с. Колташево устанавливаются территориями школы, ДК, детского сада и сельсовета.

Источники комбинированной выработки тепловой и электрической энергии отсутствуют, центральная котельная и ее потребители расположены в границах своего радиуса эффективного теплоснабжения.

Графическое изображение зоны действия источников тепловой энергии в системах теплоснабжения отображены на схеме теплоснабжения в приложении.

Часть 5. Тепловые нагрузки потребителей тепловой энергии, групп потребителей тепловой энергии в зонах действия источников тепловой энергии

По сравнению со схемой теплоснабжения 2014 года значительные изменения отсутствуют. Настоящая часть актуализирована с учетом отсутствия ценовых зон теплоснабжения.

1.5.1. Описание значений спроса на тепловую мощность в расчетных элементах территориального деления, в том числе значений тепловых нагрузок потребителей тепловой энергии, групп потребителей тепловой энергии

Расчетным элементом территориального деления, неизменяемым в границах на весь срок проектирования, является зона действия центральной котельной с. Колташево. Значения потребления тепловой энергии (мощности) при расчетных температурах наружного воздуха в соответствии с требованиями строительной климатологии приведены в таблице 2.14.

Таблица 2.14 – Значения потребления тепловой энергии (мощности) при расчетных температурах

наружного воздуха в расчетных элементах территориального деления с. Колташево

Расчетная температура наружного воздуха, °C	10	5	0	-5	-10	-15	-20	-25	-30	-35	-37
Температура воды, подаваемой в отопительную систему, °C	31,00	33,80	38,40	43,10	47,80	52,50	57,20	61,80	66,50	71,20	75,00
Температура сетевой воды в обратном трубопроводе, °С	22,90	23,60	24,90	26,20	27,40	28,70	30,00	31,30	32,60	34,00	35,00
Разница температур, °С	8,10	10,20	13,50	16,90	20,40	23,80	27,20	30,50	33,90	37,20	40,00
Потребление тепловой энергии в зоне действия котельной, Гкал/ч											
Центральная котельная с. Колташево (45:08:012901)	0,066	0,083	0,110	0,137	0,166	0,193	0,221	0,248	0,275	0,302	0,325

1.5.2. Описание значений расчетных тепловых нагрузок на коллекторах источников тепловой энергии

Центральные котельные с. Колташево имеют по одному магистральному выводу. Значение тепловой нагрузки на коллекторах источников тепловой энергии – котельных приведены в таблице 2.15.

Таблица 2.15 – Значение тепловой нагрузки на коллекторах источников тепловой энергии – котельных сельского населенного пункта с. Колташево

No	Наименование источника	Значение, Гкал/ч
1.	с. Колташево	0,349

1.5.3. Описание случаев и условий применения отопления жилых помещений в многоквартирных домах с использованием индивидуальных квартирных источников тепловой энергии

Случаев и условий применение на территории сельского населенного пункта с. Колташево отопления жилых помещений в многоквартирных домах с использованием индивидуальных квартирных источников тепловой энергии не имеется.

1.5.4. Описание величины потребления тепловой энергии в расчетных элементах территориального деления за отопительный период и за год в целом

По сравнению со Схемой теплоснабжения 2014 года значительные изменения отсутствуют.

Таблица 2.16 – Значения потребления тепловой энергии (мощности) при расчетных температурах наружного воздуха в зонах действия источников тепловой энергии с. Колташево

		, ,											
Месяц	1	2	3	4	5	6	7	8	9	10	11	12	год
Ср.температура, °С	-15,8	-14,3	-7,4	3,9	11,9	16,8	18,4	16,2	10,7	2,4	-6,2	-12,9	1
Температура воды, подаваемой в отопительную систему, °C	53,40	51,50	45,00	42,20	31	0	0	0	0	40,30	44,00	50,60	1
Температура сетевой воды в обратном трубопроводе, °C	29,00	28,50	26,70	25,90	23	0	0	0	0	25,40	26,40	28,20	1

Месяц	1	2	3	4	5	6	7	8	9	10	11	12	год
Разница температур, °C	24,40	23	18,3	16,3	8	0	0	0	0	14,90	17,60	22,4	1
Отпуск тепла с. Колташево (45:08:012901), Гкал	142,67	134,49	107,00	95,31	46,78					87,12	102,91	130,98	847,14

1.5.5. Описание существующих нормативов потребления тепловой энергии для населения на отопление и горячее водоснабжение

Нормативы потребления тепловой энергии для населения на отопление утверждены Постановлением Департамента государственного регулирования цен и тарифов Курганской области от 21 августа 2012 года № 32-2 (в редакции постановления № 1-1 от 09.01.24) «Об утверждении нормативов потребления коммунальной услуги на территории Курганской области по отоплению» и приведены в таблице 2.17.

Таблица 2.17 – Нормативы потребления тепловой энергии для населения Кетовского муниципаль-

ного округа Курганской области на отопление

Категория многоквар-	Норматив потребления (Гкал на 1 кв. метр общей площади жилого поме-							
тирного (жилого) дома		щения в месяц)						
	многоквартирные и	многоквартирные и жи-	МКД и жилые дома со					
	жилые дома со стенами	лые дома со стенами из	стенами из дерева,					
	из камня, кирпича	панелей, блоков	смешанных и других					
			материалов					
Этажность	Многоквартирные и жі	илые дома до 1999 года по	стройки включительно					
1		0,04880						
1		2						
2		0,05380						
3		0,03450						
4		0,03450						
5		0,03340						
6		0,03340						
7		0,03340						
8		0,03340						
9		0,03340						
10		0,03340						
11		-						
12 и более		0,03152						
Этажность	Многоквартирны	е и жилые дома после 199	9 года постройки					
1		0,01940						
2		0,02010						
1		2						
3		0,01910						
4		0,01860						
5		0,02020						
6		0,01890						

7	0,01890
8	-
9	0,01800
10	0,01610
11	-
12 и более	0,01720

Норматив потребления коммунальной услуги по отоплению при использовании надворных построек, расположенных на земельном участке, приведен в таблицах 2.18 и 2.19.

Таблица 2.18 — Показатели, определяемые для целей установления нормативов потребления коммунальной услуги на территории курганской области по отоплению при использовании надворных построек, расположенных на земельном участке

Наименование надворных построек	бани	гаражи
Количество тепловой энергии, необходимой для отопления расположенных на	1.0	2.0
земельном участке надворных построек, Гкал/год	1,0	۷,0

Нормативы потребления коммунальной услуги на территории Кетовского муниципального округа Курганской области по отоплению при использовании надворных построек, расположенных на земельном участке, рассчитаны исходя из продолжительности отопительного периода (количества календарных месяцев, в том числе неполных, в отопительном периоде) 8 месяцев.

Таблица 2.19 — Нормативы потребления коммунальной услуги на территории курганской области по отоплению при использовании надворных построек, расположенных на земельном участке

	1 /1		
Направление использования коммунальн	Ед. изм.	Норматив	
			потребления
Отопление на кв. метр надворных построек,	бани	Гкал на кв.	0,0150
расположенных на земельном участке	гаражи	метр в месяц	0,0215

Нормативы потребления холодной воды для предоставления коммунальной услуги по горячему водоснабжению в жилом помещении и норматив расхода тепловой энергии на подогрев холодной воды для предоставления коммунальной услуги по горячему водоснабжению на территории Курганской области утвержден Постановлением департамента государственного регулирования цен и тарифов Курганской области от 26 декабря 2017 года № 46-1 (с изменениями на 23 января 2018 года) «Об утверждении нормативов потребления холодной воды для предоставления коммунальной услуги по горячему водоснабжению в жилом помещении, норматива расхода тепловой энергии на подогрев холодной воды для предоставления коммунальной услуги по горячему водоснабжению на территории Курганской области». На территории Курганской области с 1 июля 2020 года норматив расхода тепловой энергии на подогрев холодной воды для предоставления коммунальной услуги по горячему водоснабжению, с учетом вида системы горячего водоснабжения внутри многоквартирного дома или жилого дома, а также конструктивных особенностей таких домов в соответствии с Постановлением Правительства Российской Федерации от 23 мая 2006 года № 306 «Об утверждении Правил установления и определения нормативов потребления коммунальных услуг и нормативов потребления коммунальных ресурсов в целях содержания общего имущества в многоквартирном доме» утвержден и введен в действие в размере 0,05257 Гкал на куб. м.

1.5.6. Описание сравнения величины договорной и расчетной тепловой нагрузки по зоне действия каждого источника тепловой энергии

Значения потребления тепловой энергии (мощности) при расчетных температурах наружного воздуха в зонах действия источника тепловой энергии приведены в таблице 2.20.

Таблица 2.20 — Величина договорной и расчетной тепловой нагрузки по зоне действия источника тепловой энергии котельной сельского населенного пункта с. Колташево

_		*			
	$N_{\underline{0}}$	Адрес	Объем здания,	Наименование (жилой дом, мно-	Тепловая нагрузка на
	п.п		\mathbf{M}^3	гоквартирный дом, магазин,	отопление, Гкал/час
				дет.сад, школа, гараж и т.д.)	
	1	ул. Почтовая 21	10122,46	школа	489,26
	2	ул. Почтовая 23	3574,80	Детский сад	198,76
	3	ул. Пушкина,д.20	1129,38	Административное здание	79,14
	4	ул.Камшилова,д.1б	2074,88	Дом культуры	133,72

Часть 6. Балансы тепловой мощности и тепловой нагрузки в зонах действия источников тепловой энергии

Ценовые зоны теплоснабжения в сельском населенном пункте с. Колташево отсутствуют.

1.6.1. Описание балансов установленной, располагаемой тепловой мощности и тепловой мощности нетто, потерь тепловой мощности в тепловых сетях и расчетной тепловой нагрузки по каждому источнику тепловой энергии, а в ценовых зонах теплоснабжения - по каждой системе теплоснабжения

Таблица 2.21 — Балансы тепловой мощности и тепловых нагрузок центральной котельной с. Колташево

Источник тепловой энергии Наименование показателя	центральная
Установленная мощность, Гкал/ч	0,516
Располагаемая тепловая мощность, Гкал/ч	0,490
Тепловая мощность нетто, Гкал/ч	0,482
Потери тепловой мощности в тепловых сетях, Гкал/ч	0,019
Присоединенная тепловая нагрузка, Гкал/ч	0,325

1.6.2. Описание резервов и дефицитов тепловой мощности нетто по каждому источнику тепловой энергии, а в ценовых зонах теплоснабжения - по каждой системе теплоснабжения

Таблица 2.22 – Резервы и дефициты тепловой мощности нетто центральной котельной

Наименование показателя	Источник тепловой энергии	центральная котельная
Резерв тепловой мощности нетто, Гкал/ч		0,185
Дефицит тепловой мощности нетто, Гкал/ч		_

1.6.3. Описание гидравлических режимов, обеспечивающих передачу тепловой энергии от источника тепловой энергии до самого удаленного потребителя и характеризующих существующие возможности (резервы и дефициты по пропускной способности) передачи тепловой энергии от источника тепловой энергии к потребителю

Расчетные гидравлические режимы, обеспечивающие передачу тепловой энергии от источника тепловой энергии до самого удаленного потребителя, приведены в таблице 2.18. Данные режимы обеспечивают резерв разницы давлений между подающим и обратным трубопроводом на самом удаленном потребителе.

Таблица 2.23 – Гидравлические режимы тепловых сетей

Источник тепловой	Трубо-	Напор в начале маги-	Напор в конце магистральной сети
энергии	провод	стральной сети, м	(самого удаленного потребитель), м
Центральная котельная	Прямой	24,3	22,7
с. Колташево	Обратный	20,0	21,7

По сравнению со Схемой теплоснабжения 2014 года значительные изменения в гидравлических режимах тепловых сетей отсутствуют.

1.6.4. Описание причины возникновения дефицитов тепловой мощности и последствий влияния дефицитов на качество теплоснабжения

Дефицит тепловой мощности в сельском населенном пункте с. Колташево отсутствует.

1.6.5. Описание резервов тепловой мощности нетто источников тепловой энергии и возможностей расширения технологических зон действия источников тепловой энергии с резервами тепловой мощности нетто в зоны действия с дефицитом тепловой мощности

В настоящее время в сельском населенном пункте с. Колташево имеется резерв тепловой мощности нетто источника тепловой энергии. Возможности расширения технологических зон действия источника ограничены радиусом эффективного теплоснабжения. Однако зон с дефицитом тепловой мощности в границах радиуса эффективного теплоснабжения не наблюдается.

Часть 7. Балансы теплоносителя

Значительные изменения в Схеме теплоснабжения по сравнению со схемой 2014 г. отсутствуют.

Настоящая часть актуализирована с учетом отсутствия ценовых зон теплоснабжения.

1.7.1 Описание балансов производительности водоподготовительных установок теплоносителя для тепловых сетей и максимального потребление теплоносителя в теплоиспользующих установках потребителей в перспективных зонах действия систем теплоснабжения и источников тепловой энергии, в том числе работающих на единую тепловую сеть

На расчетный срок зоны действия систем теплоснабжения и источников тепловой энергии останутся неизменными, источников тепловой энергии, работающих на единую тепловую сеть, не предвидится. Системы теплоснабжения в сельском населенном пункте с. Колташево закрытого

типа, сети ГВС – отсутствуют. Утвержденные балансы производительности водоподготовительных установок теплоносителя для тепловых сетей и максимальное потребление теплоносителя в теплоиспользующих установках потребителей приведены в таблице 2.24.

Таблица 2.24 — Балансы производительности водоподготовительных установок теплоносителя для тепловых сетей и максимальное потребление теплоносителя в теплоиспользующих установках потребителей в зоне действия пентральной котельной и тепловой сети с. Колташево

Беличина	2023	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039 -2043
производительность водо- подготовительных установок, м ³ /ч	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
максимальное потребление теплоносителя теплопотребляющими установками потребителей, м ³ /ч	0	0	0	0	0	0	0	0	0

1.7.2 Описание балансов производительности водоподготовительных установок теплоносителя для тепловых сетей и максимальное потребления теплоносителя в аварийных режимах систем теплоснабжения

На расчетный срок зоны действия системы теплоснабжения и источника тепловой энергии останутся неизменными, источников тепловой энергии, работающих на единую тепловую сеть, не предвидится.

Баланс производительности водоподготовительных установок теплоносителя для тепловых сетей и максимальное потребление теплоносителя в аварийных режимах систем теплоснабжения для котельных сельского населенного пункта с. Колташево приведен в таблице 2.25.

Таблица 2.25 — Балансы производительности водоподготовительных установок теплоносителя для тепловых сетей и максимальное потребление теплоносителя в аварийных режимах системы теплосителя в аварийных режимах системы теплосителямия

№ пп	Тепловая сеть с источником теплоснабжения	Производительность водопод- готовительных установок, м ³ /ч	Максимальное потребление теплоно- сителя в аварийных режимах систем теплоснабжения, не более м ³ /ч
1	Центральная котельная с. Колташево	0,5	0,780

Часть 8. Топливные балансы источников тепловой энергии и система обеспечения топливом

Значительные изменения в топливных балансах источников тепловой энергии в период, предшествующий актуализации схемы теплоснабжения, отсутствуют.

1.8.1 Описание видов и количества используемого основного топлива для каждого источника тепловой энергии

В качестве основного вида топлива для котельной с. Колташево используется природный газ. Природный газ – смесь газов, образовавшихся в недрах Земли при анаэробном разложении органических веществ, газ относится к группе осадочных горных пород. Природный газ в пласто-

вых условиях (условиях залегания в земных недрах) находится в газообразном состоянии – в виде отдельных скоплений (газовые залежи) или в виде газовой шапки нефтегазовых месторождений, либо в растворённом состоянии в нефти или воде. При нормальных условиях (101,325 кПа и 0 °C) природный газ находится только в газообразном состоянии.

По данным ГП «Уралтрансгаз» природный газ имеет следующую характеристику: теплота сгорания — $7880 \, \text{ккал/m}^3$, плотность газа — $0.563 \, \text{кг/m}^3$.

Таблица 2.26 – Количество используемого основного топлива для котельной сельского населенного пункта с. Колташево

Наименование теплоисточника	Количество используемого топлива
Центральная котельная с. Колташево, тыс. м ³	148

1.8.2 Описание видов резервного и аварийного топлива и возможности их обеспечения в соответствии с нормативными требованиями

В качестве резервного вида топлива используется дизельное топливо, в качестве аварийного — мазут. Дизельное топливо — жидкий продукт, под дизельным понимают топливо, получающееся из керосиново-газойлевых фракций прямой перегонки нефти. Мазут — жидкий продукт тёмно-коричневого цвета, остаток после выделения из нефти или продуктов ее вторичной переработки бензиновых, керосиновых и газойлевых фракций, выкипающих до 350-360°C.

Обеспечение резервным и аварийным видом топлива в сельсовете 100 %.

Таблица 2.27 – Количество используемого резервного и аварийного топлива для котельной сельского населенного пункта с. Колташево

Неуменеромуе дентеметомумуе	Количество используемого топлива, т/год		
Наименование теплоисточника	резервного	аварийного	
Центральная котельная с. Колташево	2,52	1,72	

1.8.3 Описание особенностей характеристик видов топлива в зависимости от мест поставки

Природный газ на 98% состоит из метана СН4, свойства которого почти полностью определяют свойства и характеристики природного газа. Также в его составе присутствуют гомологи метана – пропан СЗН8, этан С2Н6 и бутан С4Н10. Иногда природный газ может содержать сероводород, гелий и углекислый газ. Метан (СН4) – газ без цвета и запаха, легче воздуха. Метан горюч, но достаточно легко хранится. Чаще всего используется как горючее в промышленности и быту.

Пропан (C3H8) –газ, не имеющий запаха и цвета, ядовит. Обладает полезным свойством: при небольшом давлении пропан сжижается, что значительно облегчает процесс отделения от примесей и его транспортировку. Сжиженным пропаном заправляются зажигалки.

Бутан (C4H10) — очень схож по своим свойствам с пропаном, но обладает более высокой плотностью. Тяжелее воздуха в два раза. Углекислый газ (CO2) — малотоксичный бесцветный газ, не имеющий запаха, но обладающий кислым привкусом. В отличие от других компонентов состава природного газа (кроме гелия), углекислый газ не горюч.

1.8.4 Описание использования местных видов топлива

Местным видом топлива в сельском населенном пункте с. Колташево являются дрова. Существующие источники тепловой энергии не используют местные виды топлива в качестве основного в связи с низким КПД и высокой себестоимостью.

Поставки топлива в периоды расчетных температур наружного воздуха стабильные. Срывов поставок за последние 5 лет не наблюдалось.

1.8.5 Описание видов топлива, их доли и значения низшей теплоты сгорания топлива, используемых для производства тепловой энергии по каждой системе теплоснабжения

Основным видом основным топлива котельной сельского населенного пункта с. Колташево является природный газ. Доля использования составляет 100 %. Значения низшей теплоты сгорания по источнику приведены в таблице 2.28.

Таблица 2.28 – Значение низшей теплоты сгорания топлива, используемые для производства тепловой энергии по каждой системе теплоснабжения

№ пп	Система тепло- снабжения	Топливо	Объем по- требления, тыс.т	Доля потребления, %	Значение низшей теплоты сгорания топлива, ккал/т
1.	Котельная школы с. Колташево	Природный газ	148	100	7880

1.8.6 Описание преобладающего в поселении вида топлива, определяемого по совокупности всех систем теплоснабжения, находящихся в соответствующем поселении, городском округе

Преобладающий вид топлива по совокупности всех систем теплоснабжения, находящихся в сельском населенном пункте с. Колташево природный газ.

1.8.7 Описание приоритетного направления развития топливного баланса поселения, городского округа

Приоритетным направлением развития топливного баланса сельского населенного пункта с. Колташево является сохранение использования источниками газообразного топлива.

Часть 9. Надежность теплоснабжения

Значительные изменения в надежности теплоснабжения для каждой системы теплоснабжения, в том числе с учетом реализации планов строительства, реконструкции, технического перевооружения и (или) модернизации источников тепловой энергии и тепловых сетей, ввод в эксплуатацию которых осуществлен в период, предшествующий актуализации схемы теплоснабжения, отсутствуют.

1.9.1 Поток отказов (частота отказов) участков тепловых сетей

Уровень надёжности поставляемых товаров и оказываемых услуг регулируемой организацией определяется исходя из числа возникающих в результате нарушений, аварий, инцидентов на объектах данной регулируемой организации и определяется показателями, приведенными в таблице 2.29.

Уровень надёжности поставляемых товаров и оказываемых услуг регулируемой организацией определяется исходя из числа возникающих в результате нарушений, аварий, инцидентов на объектах данной регулируемой организации.

Для определения надежности системы коммунального теплоснабжения используются критерии, характеризующие состояние электроснабжения, водоснабжения, топливоснабжения источников теплоты, соответствие мощности теплоисточников и пропускной способности тепловых сетей расчетным тепловым нагрузкам, техническое состояние и резервирование тепловых сетей.

$$K = \frac{K_{\mathfrak{I}} + K_{\mathfrak{B}} + K_{\mathfrak{T}} + K_{\mathfrak{B}} + K_{\mathfrak{P}} + K_{\mathfrak{C}}}{n},$$

где $K_{\mathfrak{I}}$ - надежность электроснабжения источника теплоты;

 K_{B} - надежность водоснабжения источника теплоты;

 K_T - надежность топливоснабжения источника теплоты;

 $K_{\mathcal{B}}$ - размер дефицита (соответствие тепловой мощности источников теплоты и пропускной способности тепловых сетей расчетным тепловым нагрузкам потребителей);

 K_P - коэффициент резервирования, который определяется отношением резервируемой на уровне центрального теплового пункта (квартала, микрорайона) расчетной тепловой нагрузи к сумме расчетных тепловых нагрузок подлежащих резервированию потребителей, подключенных к данному тепловому пункту;

 K_C - коэффициент состояния тепловых сетей, характеризуемый наличием ветхих, подлежащих замене трубопроводов;

n - число показателей, учтенных в числителе.

Данные критерии зависят от наличия резервного электро-, водо-, топливоснабжения, состояния тепловых сетей и пр., и определяются индивидуально для каждой системы теплоснабжения в соответствие с «Организационно-методическими рекомендациями по подготовке к проведению отопительного периода и повышению надежности систем коммунального теплоснабжения в городах и населенных пунктах Российской Федерации» МДС 41-6.2000 (утвержден приказом Госстроя РФ от 6 сентября 2000 г. № 203).

Существует несколько степеней надежности системы теплоснабжения:

- высоконадежные K > 0.9,
- надежные -0.75 < K < 0.89,
- малонадежные -0.5 < K < 0.74,
- ненадежные K<0,5.

Таблица 2.29 – Критерии надежности системы теплоснабжения с. Колташево

Наименование котельной	Кэ	K_B	K_T	$K_{\mathcal{B}}$	K_P	K_C	К	Оценка надеж- ности системы
Котельная с. Колташево	0,8	0,8	1	1	0,5	0,5	0,7667	надежная

По сравнению со Схемой теплоснабжения 2014 года в 2023 году поток отказов (частота отказов) участков тепловых сетей значительно не изменился.

1.9.2 Частота отключений потребителей

Значительные аварийные отключения потребителей отсутствуют. Перерывы прекращения подачи тепловой энергии не превышали величины 54 ч, что соответствует второй категории потребителей согласно СП.124.13330.2012 «Тепловые сети».

1.9.3 Поток (частота) и время восстановления теплоснабжения потребителей после отключений

Среднее время восстановления теплоснабжения потребителей после аварийных отключений не превышает 15 ч, что соответствует требованиям п.6.10 СП.124.13330.2012 «Тепловые сети».

1.9.4 Графические материалы (карты-схемы тепловых сетей и зон ненормативной надежности и безопасности теплоснабжения)

Карты-схемы тепловых сетей приведены в приложении. Зоны ненормативной надежности отсутствуют.

1.9.5 Результаты анализа аварийных ситуаций при теплоснабжении, расследование причин которых осуществляется федеральным органом исполнительной власти, уполномоченным на осуществление федерального государственного энергетического надзора, в соответствии с Правилами расследования причин аварийных ситуаций при теплоснабжении, утвержденными постановлением Правительства Российской Федерации от 17 октября 2015 г. N 1114 "О расследовании причин аварийных ситуаций при теплоснабжении и о признании утратившими силу отдельных положений Правил расследования причин аварий в электроэнергетике"

Аварийные ситуации при теплоснабжении, расследование причин которых осуществляется федеральным органом исполнительной власти, уполномоченным на осуществление федерального государственного энергетического надзора, в соответствии с Правилами расследования причин аварийных ситуаций при теплоснабжении, утверждёнными постановлением Правительства Российской Федерации от 17 октября 2015 г. № 1114 "О расследовании причин аварийных ситуаций при теплоснабжении и о признании утратившими силу отдельных положений Правил расследования причин аварий в электроэнергетике", за последние 5 лет в сельском населенном пункте с. Колташево не зафиксированы.

1.9.6 Результаты анализа времени восстановления теплоснабжения потребителей, отключенных в результате аварийных ситуаций при теплоснабжении, указанных в пп 1.9.5

Среднее время восстановления теплоснабжения потребителей после аварийных отключений не превышает 15 ч, что соответствует требованиям п.6.10 СП.124.13330.2012 «Тепловые сети».

По сравнению со Схемой теплоснабжения 2014 года в 2023 году изменения среднего времени восстановления теплоснабжения при аварийных ситуациях не существенные.

Часть 10. Технико-экономические показатели теплоснабжающих и теплосетевых организаций

Значительные изменения технико-экономических показателей теплоснабжающих и теплосетевых организаций для каждой системы теплоснабжения, в том числе с учетом реализации планов строительства, реконструкции, технического перевооружения и (или) модернизации источников тепловой энергии и тепловых сетей, ввод в эксплуатацию которых осуществлен в период, предшествующий актуализации схемы теплоснабжения, отсутствуют.

Описание результатов хозяйственной деятельности теплоснабжающей и теплосетевой организации ООО «Уют» (ранее МУП «Уют») в соответствии с требованиями, устанавливаемыми Правительством Российской Федерации в стандартах раскрытия информации теплоснабжающими организациями, теплосетевыми организациями, представлено в таблицах 2.30-2.31.

Таблица 2.30 – Общая информация о регулируемой организации

Полное юридическое наименование	ООО «Уют»
Директор	Ерзиков Алексей Валерьевич
ИНН	4510026846
н типипеский эпрес	641334, Курганская область, Кетовский р-н, п. Светлые поляны, мкр 1-й, д. 18
Контактные телефоны	+7 (35231) 6-92-30, +7 (35231) 3-50-19
Основной вид деятельности (по коду ОКВЭД ред.2)	35.30.14 - Производство пара и горячей воды (тепловой энергии) котельными

Таблица 2.31 – Результаты работы за 2023 год

Код	Показатель	Значение, тыс.р
Ф1.1110	Нематериальные активы	0
Ф1.1120	Результаты исследований и разработок	0
Ф1.1130	Нематериальные поисковые активы	0
Ф1.1140	Материальные поисковые активы	0
Ф1.1150	Основные средства	3857
Ф1.1160	Доходные вложения в материальные ценности	0
Ф1.1170	Финансовые вложения	0
Ф1.1180	Отложенные налоговые активы	0
Ф1.1190	Прочие внеоборотные активы	0
Ф1.1100	Итого по разделу I - Внеоборотные активы	0
Ф1.1210	Запасы	12
Ф1.1220	Налог на добавленную стоимость по приобретенным ценностям	0
Ф1.1230	Дебиторская задолженность	11023
Ф1.1240	Финансовые вложения (за исключением денежных эквивалентов)	0
Ф1.1250	Денежные средства и денежные эквиваленты	889
Ф1.1260	Прочие оборотные активы	0
Ф1.1200	Итого по разделу II - Оборотные активы	0

Ф1.1600	БАЛАНС (актив)	15782
Ф1.1310	Уставный капитал (складочный капитал, уставный фонд, вклады товарищей)	0
	Собственные акции, выкупленные у акционеров	0
	Переоценка внеоборотных активов	0
Ф1.1350	Добавочный капитал (без переоценки)	0
	Резервный капитал	0
	Нераспределенная прибыль (непокрытый убыток)	0
Ф1.1300	Итого по разделу III - Капитал и резервы	7189
Ф1.1410	Заемные средства	2650
Ф1.1420	Отложенные налоговые обязательства	0
Ф1.1430	Оценочные обязательства	0
Ф1.1450	Прочие обязательства	0
	Итого по разделу IV - Долгосрочные обязательства	0
Ф1.1510	Заемные средства	1215
Ф1.1520	Кредиторская задолженность	4728
Ф1.1530	Доходы будущих периодов	0
Ф1.1540	Оценочные обязательства	0
Ф1.1550	Прочие обязательства	0
Ф1.1500	Итого по разделу V - Краткосрочные обязательства	0
Ф1.1700	БАЛАНС (пассив)	15782
Ф2.2110	Выручка	32843
Ф2.2120	Себестоимость продаж	25237
Ф2.2100	Валовая прибыль (убыток)	0
Ф2.2210	Коммерческие расходы	0
Ф2.2220	Управленческие расходы	0
Ф2.2200	Прибыль (убыток) от продаж	0
Ф2.2310	Доходы от участия в других организациях	0
Ф2.2320	Проценты к получению	0
Ф2.2330	Проценты к уплате	0
Ф2.2340	Прочие доходы	149
Ф2.2350	Прочие расходы	1662
t e e e e e e e e e e e e e e e e e e e	Прибыль (убыток) до налогообложения	0
Ф2.2410	Текущий налог на прибыль	725
Ф2.2411	Текущий налог на прибыль	0
Ф2.2412	Отложенный налог на прибыль	0
Ф2.2421	В т.ч. постоянные налоговые обязательства (активы)	0
Ф2.2430	Изменение отложенных налоговых обязательств	0
Ф2.2450	Изменение отложенных налоговых активов	0
Ф2.2460	Прочее	0
Ф2.2400	Чистая прибыль (убыток)	5368
Ф2.2510	Результат от переоценки внеобор.активов, не включ.в чистую при-	0

	быль(убыток) периода	
$\Psi Z.ZJZU$	Результат от прочих операций, не включаемый в чистую прибыль (убыток) периода	0
	Налог на прибыль от операций, результат которых не включается в чистую прибыль	0
Ф2.2500	Совокупный финансовый результат периода	0
Ф2.2910	Разводненная прибыль (убыток) на акцию	0
Ф2.2900	Базовая прибыль (убыток) на акцию	0

Долгосрочные параметры регулирования, устанавливаемые на долгосрочный период регулирования для формирования тарифов с использованием методы индексации установленных тарифов в отношении компании ООО «Уют» приведены в таблице 2.32 в соответствии с постановлением Департамента государственного регулирования цен и тарифов Курганской области № 44-7 от 19.12.2018 г.

Таблица 2.32 — Долгосрочные параметры регулирования, устанавливаемые на долгосрочный период регулирования для формирования тарифов с использованием методы индексации установленных тарифов в отношении компании ООО «Уют»

No	Год	Базовый	Индекс	Норма-	Уровень	Показатели	Реализация	Дина-
Π/		уровень	эффектив-	тивный	надежно-	энергосбе-	программ в	мика
П		операци-	ности опе-	уровень	сти тепло-	режения	области	изме-
		онных	рацион-	прибыли,	снабжения	энергетиче-	энергосбе-	нения
		расходов,	ных рас-	%		ской эффек-	режения и	pacxo-
		тыс. руб.	ходов, %			тивности	повышения	дов на
							энергетиче-	топли-
							ской эффек-	ВО
							тивности	
			Произн	водство тепл	овой энергии	(мощности)		
1	2019		1	-	_	-	_	-
2	2020		1	-	-	-	-	-
3	2021	5271,32	1	-	-	-	-	-
4	2022		1	-	-	-	-	-
5	2023		1	-	-	-	-	-
				Передача т	гепловой энер:	гии		
6	2019		5	-	-	-	-	-
7	2020		5		_	-	-	-
8	2021	928,35	5	-	-	-	-	-
9	2022		5	-	-	-	-	-
10	2023		5	-	-	-	_	-

По сравнению со Схемой теплоснабжения 2014 года в 2023 году изменилась форма организации теплоснабжающей организации.

Часть 11. Цены (тарифы) в сфере теплоснабжения

1.11.1 Динамика утвержденных тарифов, устанавливаемых органами исполнительной власти субъекта Российской Федерации в области государственного регулирования цен (тарифов) по каждому из регулируемых видов деятельности и по каждой теплосетевой и теплоснабжающей организации с учетом последних 3 лет

Сведения о тарифах на тепловую мощность для потребителей ООО «Уют», утвержденных постановлениями Департамента государственного регулирования цен и тарифов Курганской области №44-7 от 19.12.2018 г. (в редакции постановлений № 45-37 от 20.12.2019, № 50-46 от 01.12.2020, № 52-78 от 17.11.2022), приведены в таблице 2.33.

Таблица 2.33 – Динамика тарифов на тепловую энергию (мощность)

Период	Тариф, руб./Гкал
01.03.12- 30.06.12	2314,01
01.07.12- 31.08.12	2452, 85
01.09.12 - 31.12.12	3461,51
01.01.13-30.06.13	3461,51
01.07.13-31.12.13	3760,03
01.01.14-30.06.14	3760,03
01.07.14-31.12.14	4003,66
01.01.19 -30.06.19	4648,03
31.07.19 -31.12.19	4665,61
01.01.20-30.06.20	4636,47
01.07.20 -31.12.20	4636,47
01.01.21 -30.06.21	4630,37
01.07.21 -31.12.21	4630,37
01.01.22-30.06.22	4630,37
01.07.22-30.11.22	4744,36
01.12.22 -30.06.23	5106,77
01.07.23 -31.12.23	5106,77

По сравнению со Схемой теплоснабжения 2014 года в 2023 году имеется рост тарифов услуг теплоснабжающих организаций и теплосетевых организаций.

1.11.2 Структура цен (тарифов), установленных на момент разработки схемы теплоснабжения

Структура цены на тепловую энергию формируется одноставочным тарифом (таблица 2.34).

Таблица 2.34 – Структура цен (тарифов) с. Колташево

Dин тоничио	Период			
риф на передачу тепловой энергии (мощности) дбавка к тарифу на тепловую энергию для потреби-	01.12.22 -30.06.23	01.07.23 -31.12.23		
Тариф на тепловую энергию (мощность), руб./Гкал	5106,77	5106,77		
Тариф на передачу тепловой энергии (мощности)	0	0		
Надбавка к тарифу на тепловую энергию для потребителей	0	0		

Надбавка к тарифу регулируемых организаций на теп-	0	0
ловую энергию	O	O
Надбавка к тарифу регулируемых организаций на пе-	0	0
редачу тепловой энергии	U	J

1.11.3 Описание платы за подключение к системе теплоснабжения

В соответствии с постановлением Департамента государственного регулирования цен и тарифов Курганской области от 3 октября 2013 г. N 34-1 «Об установлении платы за подключение к системам теплоснабжения» плата за подключение к системам теплоснабжения на территории Курганской области составляет 550 рублей (с НДС) в случае, если подключаемая тепловая нагрузка объекта капитального строительства заявителя, в том числе застройщика, не превышает 0,1 Гкал/ч.

В случае если подключаемая тепловая нагрузка превышает 1,5 Гкал/ч и отсутствует техническая возможность подключения, плата за подключение определяется органом регулирования в индивидуальном порядке.

1.11.4 Описание платы за услуги по поддержанию резервной тепловой мощности, в том числе для социально значимых категорий потребителей

Плата за услуги по поддержанию резервной тепловой мощности, в том числе для социально значимых категорий потребителей, не производится.

1.11.5 Описание динамики предельных уровней цен на тепловую энергию (мощность), поставляемую потребителям, утверждаемых в ценовых зонах теплоснабжения с учетом последних 3 лет

Ценовые зоны теплоснабжения в сельском поселении отсутствуют.

1.11.6 Описание средневзвешенного уровня сложившихся за последние 3 года цен на тепловую энергию (мощность), поставляемую единой теплоснабжающей организацией потребителям в ценовых зонах теплоснабжения

Ценовые зоны теплоснабжения в сельском поселении отсутствуют.

Часть 12. Описание существующих технических и технологических проблем в системах теплоснабжения поселения

По сравнению со Схемой теплоснабжения 2014 года существующие технические и технологические проблемы в системах теплоснабжения значительно не изменились.

1.12.1 Описание существующих проблем организации качественного теплоснабжения (перечень причин, приводящих к снижению качества теплоснабжения, включая проблемы в работе теплопотребляющих установок потребителей)

Согласно программе комплексного развития коммунальной инфраструктуры Кетовского района в котельных отсутствует учет выработки тепловой энергии, что не позволяет определить

фактический баланс производства и потребления тепловой энергии. Расчет выработки тепловой энергии ведется по расходу топлива. Сам по себе учет тепловой энергии снижения потребления энергии не обеспечивает, он дает возможность производить взаимозачеты за фактически отпущенную энергию, объем которой может быть как ниже так и превышать расчетное потребление, а лишь позволяет дать сравнительную оценку потребления энергии для последующего планирования мероприятий, направленных на экономию энергоресурсов.

1.12.2 Описание существующих проблем организации надежного и безопасного теплоснабжения поселения (перечень причин, приводящих к снижению надежного теплоснабжения, включая проблемы в работе теплопотребляющих установок потребителей)

Основной проблемой развития жилищно-коммунального хозяйства является высокая степень износа тепловых сетей. Кроме того основными причинами неэффективной работы системы теплоснабжения является повышенные потери тепла в старых оконных блоках, дверях и стеновых конструкциях. Тепловые сети котельных, в основном имеют плохую теплоизоляцию, что приводит к дополнительным (по сравнению с нормативными) потерями тепловой энергии.

1.12.3 Описание существующих проблем развития систем теплоснабжения

Одной из существующих проблем развития централизованных систем теплоснабжения является высокие тарифы на тепловую энергию и, как следствие, малый спрос на заявки подключение потенциальных потребителей. С другой стороны рентабельность теплоснабжения в настоящее время не высока, что не позволяет развивать сети теплоснабжающим и теплосетевым организациям.

1.12.4 Описание существующих проблем надежного и эффективного снабжения топливом действующих систем теплоснабжения

Проблем надежного и эффективного снабжения топливом действующих систем теплоснабжения не существует.

1.12.5 Анализ предписаний надзорных органов об устранении нарушений, влияющих на безопасность и надежность системы теплоснабжения

Предписания надзорных органов об устранении нарушений, влияющих на безопасность и надежность системы теплоснабжения, отсутствуют.

ГЛАВА 2. Существующие и перспективные потребление тепловой энергии на цели теплоснабжения

2.1 Данные базового уровня потребления тепла на цели теплоснабжения

Перечень объектов теплопотребления, подключенных к тепловым сетям существующих систем теплоснабжения в период, предшествующий актуализации схемы теплоснабжения, значительно не изменился.

Базовый уровень потребления тепла на цели теплоснабжения от центральной котельной составляет 847,14 Гкал/год (0,325 Гкал/ч).

По сравнению со Схемой теплоснабжения 2014 года в 2023 году значительные изменения базового уровня потребления тепла на цели теплоснабжения отсутствуют.

2.2 Прогнозы приростов площади строительных фондов, сгруппированные по расчетным элементам территориального деления и по зонам действия источников тепловой энергии с разделением объектов строительства на многоквартирные дома, жилые дома, общественные здания и производственные здания промышленных предприятий, на каждом этапе

Таблица 2.35 — Приросты площади строительных фондов в расчетном элементе в расчетном элементе с источником теплоснабжения — центральной котельной с. Колташево

Mente e nero makom re	исть с источником теплоснаожения – центральной котельной с. Колташево										
	Площадь строительных фондов										
Показатель	Сущест-вующая		Перспективная								
Год	2023	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039 - 2043		
		Кадастр	овый кв	артал 45	:08:0129	01					
многоквартирные дома (прирост), м ²	0	0	0	0	0	0	0	0	0		
жилые дома (при- рост), м ²	0	0	0	0	0	0	0	0	0		
общественные здания (прирост), м ²	0	0	0	0	0	0	0	0	0		
производственные здания промыш-ленных предприятий (прирост), м ²	0	0	0	0	0	0	0	0	0		

Таблица 2.36 – Площадь строительных фондов и приросты площади строительных фондов в расчетном элементе с индивидуальными источниками теплоснабжения с. Колташево

тетном элементе е индиви	етном элементе с индивидуальными источниками теплоснаожения с. Колташево									
			Пло	щадь стр	оительн	ых фон,	ДОВ			
Показатель	Суще-									
Hokasarenb	CT-	Перспективная								
	вующая									
Год	2023	2024	2025	2026	2027	2028	2029-	2034-	2039 -	
	2023	2024	2023		2027	2028	2033	2038	2043	
K	Кадастровые кварталы 45:08:012901 и 45:08:012902									
многоквартирные дома (прирост), м ²	0	0	0	0	0	0	0	0	0	
жилые дома (прирост), м ²	901	901	901	901	901	901	4505	4505	4505	
общественные здания (прирост), м ²	0	0	0	0	0	500	0	0	0	
производственные здания промышленных предприятий (прирост), м ²	0	0	0	0	100	0	0	0	0	

2.3 Прогнозы перспективных удельных расходов тепловой энергии на отопление, вентиляцию и горячее водоснабжение, согласованных с требованиями к энергетической эффективности объектов теплопотребления, устанавливаемых в соответствии с законодательством Российской Федерации

Таблица 2.37 – Прогнозы перспективных удельных расходов тепловой энергии в зоне действия с источником теплоснабжения – центральной котельной с. Колташево

Год Удель- ный расход тепловой энергии	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039 -2043
Тепловая энергия на отопление, Гкал/год	847,14	847,14	847,14	847,14	847,14	847,14	847,14	847,14
Теплоноситель на ГВС, Гкал/год	0	0	0	0	0	0	0	0
Тепловая энергия на вентиляцию, Гкал/год	0	0	0	0	0	0	0	0
Всего, Гкал/год	847,14	847,14	847,14	847,14	847,14	847,14	847,14	847,14

Таблица 2.38 — Прогнозы перспективных удельных расходов тепловой энергии в зоне действия с индивидуальными источниками теплоснабжения с. Колташево

Год Удель- ный расход тепловой энергии	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039 -2043
Тепловая энергия на отопление, Гкал/год	8544	8859	9174	9489	9804	11378	12952	14526
Теплоноситель на ГВС, Гкал/год	0	0	0	0	0	0	0	0
Тепловая энергия на вентиляцию, Гкал/год	0	0	0	0	0	0	0	0
Всего, Гкал/год	8544	8859	9174	9489	9804	11378	12952	14526

2.4 Прогнозы приростов объемов потребления тепловой энергии (мощности) и теплоносителя с разделением по видам теплопотребления в каждом расчетном элементе территориального деления и в зоне действия каждого из существующих или предлагаемых для строительства источников тепловой энергии на каждом этапе

Значительные изменения показателей существующего и перспективного потребления тепловой энергии на цели теплоснабжения отсутствуют.

Таблица 2.39 — Прогнозы приростов объемов потребления тепловой энергии (мощности) и теплоносителя в зоне действия центральной котельной с. Колташево

Потреблени	Год	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039 -2043	
Расчетный э.	пемент (Кадастровый в	квартал 45:08:012901, зона действия центральной котельной с. Колташево)								
Тепловая	прирост нагрузки на отопление	0	0	0	0	0	0	0	0	
энергия (мощности),	прирост нагрузки на ГВС	0	0	0	0	0	0	0	0	
Гкал	прирост нагрузки на вентиляцию	0	0	0	0	0	0	0	0	
Тепловая	прирост нагрузки на отопление	0	0	0	0	0	0	0	0	
энергия (мощности),	прирост нагрузки на ГВС	0	0	0	0	0	0	0	0	
Гкал/ч	прирост нагрузки на вентиляцию	0	0	0	0	0	0	0	0	
Тандама	прирост нагрузки на отопление	0	0	0	0	0	0	0	0	
Теплоно ситель, Гкал -	прирост нагрузки на ГВС	0	0	0	0	0	0	0	0	
	прирост нагрузки на вентиляцию	0	0	0	0	0	0	0	0	

2.5 Прогнозы приростов объемов потребления тепловой энергии (мощности) и теплоносителя с разделением по видам теплопотребления в расчетных элементах территориального деления и в зонах действия индивидуального теплоснабжения на каждом этапе

Таблица 2.40 – Прогнозы приростов объемов потребления тепловой энергии (мощности) и тепло-

носителя в зоне действия центральной котельной с. Колташево

	Series a some describing describing to the series of the s								
Потреблени	Год ие	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039 -2043
	Кадастровые ки	варталы	45:08:03	1001, 45:0	08:031002	2 и 45:08	:031003		
Тепловая	прирост нагрузки на отопление								
энергия,	прирост нагрузки на ГВС	0	0	0	0	0	0	0	0
Гкал	прирост нагрузки на вентиляцию	0	0	0	0	0	0	0	0
Тепловая	прирост нагрузки на отопление								
мощность, Гкал/ч	прирост нагрузки на ГВС	0	0	0	0	0	0	0	0
I Kaji/ 4	прирост нагрузки на вентиляцию	0	0	0	0	0	0	0	0
	прирост нагрузки на отопление								
Теплоноситель, м ³ /ч	прирост нагрузки на ГВС	0	0	0	0	0	0	0	0
	прирост нагрузки на вентиляцию	0	0	0	0	0	0	0	0

2.6 Прогнозы приростов объемов потребления тепловой энергии (мощности) и теплоносителя объектами, расположенными в производственных зонах, с учетом возможных изменений производственных зон и их перепрофилирования и приростов объемов потребления тепловой энергии (мощности) производственными объектами с разделением по видам теплопотребления и по видам теплоносителя (горячая вода и пар) в зоне действия каждого из существующих или предлагаемых для строительства источников тепловой энергии на каждом этапе

Приросты объемов потребления тепловой энергии (мощности) и теплоносителя объектами, расположенными в производственных зонах на расчетный период не планируются.

ГЛАВА 3. Электронная модель системы теплоснабжения поселения

В соответствии с постановлением правительства Российской федерации № 154 от 22 февраля 2012 года «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения», разработка электронной модели системы теплоснабжения не является обязательной к выполнению для поселений численностью населения менее 100 тыс. человек.

Электронная модель системы теплоснабжения сельского населенного пункта с. Колташево разработана с учетом подпункта «б» пункта 2 Перечня поручений Президента Российской Федерации по итогам совещания по вопросам прохождения осенне-зимнего отопительного периода от 29.12.2021 № Пр-325 и разъяснений Минэнерго России о рекомендации разрабатывать электронную модель с возможностью проведения гидравлических расчетов тепловых сетей и расчета вероятности отказа (аварийной ситуации) и безотказной (безаварийной) работы системы теплоснабжения с целью разработки предложений по реконструкции тепловых сетей, не обеспечивающих нормативную надежность теплоснабжения, вне зависимости от численности населения поселения, городского округа, при разработке (актуализации) схемы теплоснабжения поселений, городских округов.

Сценарии развития аварий в системах теплоснабжения с моделированием гидравлических режимов работы таких систем приведены в п.11.7 Главы 11 «Оценка надежности теплоснабжения» Обосновывающих материалов Схемы. Меры по обеспечению надежности теплоснабжения и бесперебойной работы систем теплоснабжения приведены в Разделе 16 Пояснительной записки Схемы.

Внешний вид электронной модели теплоснабжения с. Колташево приведен на рисунке 2.4.

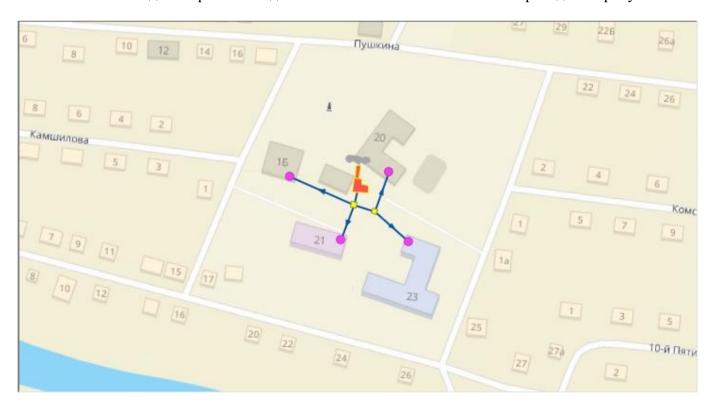


Рисунок 2.4 – Модель системы теплоснабжения котельной с. Колташево

ГЛАВА 4. Перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки потребителей

4.1 Балансы существующей на базовый период схемы теплоснабжения (актуализации схемы теплоснабжения) тепловой мощности и перспективной тепловой нагрузки в каждой из зон действия источников тепловой энергии с определением резервов (дефицитов) существующей располагаемой тепловой мощности источников тепловой энергии, устанавливаемых на основании величины расчетной тепловой нагрузки, а в ценовых зонах теплоснабжения - балансы существующей на базовый период схемы теплоснабжения (актуализации схемы теплоснабжения) тепловой мощности и перспективной тепловой нагрузки в каждой системе теплоснабжения с указанием сведений о значениях существующей и перспективной тепловой мощности источников тепловой энергии, находящихся в государственной или муниципальной собственности и являющихся объектами кониессионных соглашений или договоров аренды

Подпункт актуализирован с учетом отсутствия ценовых зонах теплоснабжения в сельском поселении.

Балансы тепловой энергии (мощности) и перспективной тепловой нагрузки источников тепловой энергии котельных с. Колташево приведены в таблице 2.41.

Таблица 2.41 — Балансы тепловой энергии (мощности) и перспективной тепловой нагрузки источника тепловой энергии — пентральной котельной с. Колташево

mika remieben eneprim gempanbien kerembien et komamebe										
Год	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039 -2043		
Показатель						2033	2038	-2043		
Располагаемая мощность, Гкал/ч	0,490	0,490	0,490	0,490	0,490	0,490	0,490	0,490		
Тепловая нагрузка потребите- лей, Гкал/ч	0,133	0,134	0,134	0,135	0,135	0,138	0,140	0,143		
Резервная тепловая мощность, Гкал/ч	0,325	0,325	0,325	0,325	0,325	0,325	0,325	0,325		

4.2 Гидравлический расчет передачи теплоносителя для каждого магистрального вывода с целью определения возможности (невозможности) обеспечения тепловой энергией существующих и перспективных потребителей, присоединенных к тепловой сети от каждого источника тепловой энергии

В центральной котельной с. Колташево имеется по одному магистральному выводу. Гидравлический расчет передачи теплоносителя выполнен в программе Zulu Thermo, результаты расчета, в том числе пьезометрические графики, приведены на рисунке 2.5.

Рисунок 2.5 – Пьезометрический график тепловой сети по магистральному выводу центральной котельной до ДК с. Колташево

4.3 Выводы о резервах (дефицитах) существующей системы теплоснабжения при обеспечении перспективной тепловой нагрузки потребителей

Резервов существующих систем теплоснабжения в с. Колташево достаточно для обеспечения перспективной тепловой нагрузки потребителей, однако, изменение последней на расчетный период не предполагается.

ГЛАВА 5. Мастер-план развития систем теплоснабжения поселения, городского округа, города федерального значения

5.1 Описание вариантов (не менее двух) перспективного развития систем теплоснабжения поселения, городского округа, города федерального значения (в случае их изменения относительно ранее принятого варианта развития систем теплоснабжения в утвержденной в установленном порядке схеме теплоснабжения)

Развитие теплоснабжения в сельском населенном пункте с. Колташево возможно по трем сценариям.

Первый. Существующая тенденция отключения двух- и одноквартирных жилых домов приведет к полному приводу частного сектора на индивидуальное отопление. Подводящие сети к таким домам будут выведены из эксплуатации. Значительного влияния на гидравлический режим работы системы теплоснабжения отключения не окажут, поскольку таких потребителей немного. Замена ветхих и аварийных теплосетей будет осуществляться по мере их выхода из строя с постепенным нарастанием случаев отказа и увеличением последствий. Такой сценарий не требует материальных затрат на ближайшие годы.

Второй. Сохранение существующей структуры потребления тепловой энергии, в том числе уже подключенными индивидуальными домами, с возможностью подключения новых потребителей. Обязательное сохранение теплоснабжения муниципальных потребителей. Для этого требуется увеличить ежегодный объем заметы ветхих и аварийных теплосетей.

Третий. Отказ от существующей централизованной системы теплоснабжения с поэтапным переводом наиболее удаленных потребителей на блочно-модульные котельные. Постепенные вывод из эксплуатации теплосетей от существующих котельных и сокращение их зоны действия. Поддержание работоспособности существующих теплосетей до их вывода из эксплуатации за счет своевременных ремонтов.

Мероприятия по замене тепловых сетей, запланированные в схеме 2014 года, не были выполнены в полном объеме.

5.2 Технико-экономическое сравнение вариантов перспективного развития систем теплоснабжения поселения

Конкурентно-способным вариантам предъявляются следующие требования:

- все варианты выбираемые для сравнения должны отвечать обязательным требованиям и кроме того обеспечивать в установленные сроки строительство и сдачу объектов в эксплуатацию, соответствовать требованиям нормативных документов,
- для правильного выбора проектного решения необходимо обеспечить сопоставимость сравниваемых вариантов.

Технико-экономическое сравнение вариантов перспективного развития систем теплоснабжения поселения приведены в таблице 2.42.

Таблица 2.42 – Технико-экономическое сравнение вариантов развития

№ п/п	Наименование показателя	1 вариант	2 вариант	3 вариант
1.	Капиталовложения, тыс.руб.	1101	1101	1200
2.	Эксплуатационные расходы, тыс.руб.	100	-	100
3.	Произведено тепловой энергии, Гкал/год	965,99	938,14	931,81
4.	Потери тепловой энергии, %	12,30	9,7	1

5.3 Обоснование выбора приоритетного варианта перспективного развития систем теплоснабжения поселения, городского округа, города федерального значения на основе анализа ценовых (тарифных) последствий для потребителей, а в ценовых зонах теплоснабжения - на основе анализа ценовых (тарифных) последствий для потребителей, возникших при осуществлении регулируемых видов деятельности, и индикаторов развития систем теплоснабжения поселения, городского округа, города федерального значения

Подпункт разработан с учетом отсутствия ценовых зон теплоснабжения.

Для сельского населенного пункта с. Колташево предлагается сохранение отопления многоквартирных жилых домов и объектов общественно-делового назначения от действующих центральных котельных.

Для индивидуальных жилых домов предусматривается автономное теплоснабжение. Для ремонтируемых и проектируемых тепловых сетей принята подземная прокладка в лотковых каналах с устройством камер для обслуживания арматуры.

Строительство новых источников тепловой энергии не требуется в связи с низким спросом централизованного теплоснабжения среди населения.

Строительство блочно-модульных котельных для социально-административных объектов населенных пунктов сельского поселения вместо существующих индивидуальных (встроенных) источников привело бы к повышению автоматизации и эффективности работы системы теплоснабжения, снизило затраты на эксплуатацию. Но внедрение такой системы требует больших материальных затрат.

Износ тепловых сетей сельского населенного пункта с. Колташево достаточно высокий, что свидетельствует о высокой вероятности аварий теплотрассы, микроповреждений трубопроводов, а следовательно, высоких потерь теплоносителя и тепловой энергии. Реконструкция существующей системы теплоснабжения позволит повысить эффективность оборудования, повысить уровень надежности, снизить потери тепловой энергии.

В рассмотренных вариантах развития системы теплоснабжения (п.5.2) потребность произведенной тепловой энергии останется без существенных изменений, капитальные вложения сопоставимы.

Существующие центральные котельные имеют продолжительный срок эксплуатации. Строительство новых источников тепловой энергии не требуется в связи с низким спросом централизованного теплоснабжения среди населения.

Первый вариант содержит наибольшие риски по отказам в периоды отопления, массовым недоотпускам энергии и потерями тепловой энергии до реконструкции, требующей значительные капитальные вложения в сжатые сроки.

Второй вариант подразумевает сохранение существующей системы с равномерным распределением капитальных расходов, наименьшими рисками и обновлению системы теплоснабжения на расчетный период.

Третий вариант связан с полным отказом от централизованной системы, с капитальными вложениями на проектирование и сооружение новых индивидуальных котельных, содержанием еще не выведенных тепловых сетей существующих централизованных котельных, их ремонтами, а также возможными рисками значительного увеличения затрат на сооружение новых источников. Кроме того для такого варианта полностью отсутствует возможность вернуть централизованную систему теплоснабжения, из-за значительных средств на сооружение теплосетей. Такой сценарий в ближайшее время не является актуальным.

Из трех вариантов наибольшее количество произведенной тепловой энергии имеется в первом варианте в связи с потерями тепла в теплосетях, особенно в ветхих и аварийных.

С учетом имеющихся рисков выбран второй вариант перспективного развития систем теплоснабжения.

По сравнению со Схемой теплоснабжения 2014 года в 2023 году значительные изменения, влияющие на перспективное развития котельных, отсутствуют.

ГЛАВА 6. Существующие и перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей, в том числе в аварийных режимах

6.1 Расчетная величина нормативных потерь (в ценовых зонах теплоснабжения - расчетную величину плановых потерь, определяемых в соответствии с методическими указаниями по разработке схем теплоснабжения) теплоносителя в тепловых сетях в зонах действия источников тепловой энергии

Подпункт разработан с учетом отсутствия ценовых зон теплоснабжения.

В соответствии с п. 6.16 СП 124.13330.2012 «Тепловые сети» установка для подпитки системы теплоснабжения на теплоисточнике должна обеспечивать подачу в тепловую сеть в рабочем режиме воду соответствующего качества и аварийную подпитку водой из систем хозяйственнопитьевого или производственного водопроводов.

Расход подпиточной воды в рабочем режиме должен компенсировать расчетные (нормируемые) потери сетевой воды в системе теплоснабжения.

Расчетные (нормируемые) потери сетевой воды в системе теплоснабжения включают расчетные технологические потери (затраты) сетевой воды и потери сетевой воды с нормативной утечкой из тепловой сети и систем теплопотребления.

Среднегодовая утечка теплоносителя (м³/ч) из водяных тепловых сетей должна быть не более 0,25 % среднегодового объема воды в тепловой сети и присоединенных системах теплоснабжения независимо от схемы присоединения (за исключением систем горячего водоснабжения, присоединенных через водоподогреватели). Централизованная система теплоснабжения в сельсовете — закрытого типа. Сезонная норма утечки теплоносителя устанавливается в пределах среднегодового значения.

Согласно СП 124.13330.2012 «Тепловые сети» (п.6.16) расчетный расход среднегодовой утечки воды, ${\rm M}^3/{\rm H}$ для подпитки тепловых сетей следует принимать 0,25 % фактического объема воды в трубопроводах тепловых сетей и присоединенных к ним системах отопления и вентиляции зданий.

Объем воды в рассматриваемых закрытых системах теплоснабжения приняты согласно СП 124.13330.2012 «Тепловые сети» (п.6.16) и указаны в таблице 2.43.

Таблица 2.43 – Объем воды в трубопроводах тепловых сетей с. Колташево

Теплоисточник	Центральная котельная
Объем воды в системе теплоснабжения, м ³	39

Максимальное нормируемое потребление теплоносителя теплопотребляющими установками потребителей равно нулю, так как система теплоснабжения закрытого типа.

Расчетная величина нормативных потерь теплоносителя в тепловых сетях в зонах действия муниципальных источников тепловой энергии сельского населенного пункта с. Колташево приведена в таблице 2.44.

Таблица 2.44 — Расчетная величина нормативных потерь теплоносителя центральной котельной с. Колташево

Год Величина	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039 -2043
производительность водоподготовительных установок, м ³ /ч	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
максимальное потребление теплоносителя теплопотребляющими установками потребителей, м ³ /ч	0	0	0	0	0	0	0	0

6.2 Максимальный и среднечасовой расход теплоносителя (расход сетевой воды) на горячее водоснабжение потребителей с использованием открытой системы теплоснабжения в зоне действия каждого источника тепловой энергии, рассчитываемый с учетом прогнозных сроков перевода потребителей, подключенных к открытой системе теплоснабжения (горячего водоснабжения), отдельным участкам такой системы, на закрытую систему горячего водоснабжения

Максимальное нормируемое потребление теплоносителя теплопотребляющими установками потребителей в сельском поселении равно нулю, так как система теплоснабжения закрытого типа.

Открытые системы теплоснабжения и системы горячего водоснабжения в зоне действия каждого источника тепловой энергии сельского населенного пункта с. Колташево отсутствуют. Теплоноситель на горячее водоснабжение потребителей не используется.

6.3 Сведения о наличии баков-аккумуляторов

В составе оборудования котельных сельского населенного пункта с. Колташево бакиаккумуляторы отсутствуют.

6.4 Нормативный и фактический (для эксплуатационного и аварийного режимов) часовой расход подпиточной воды в зоне действия источников тепловой энергии

В соответствии с п. 6.16 СП 124.13330.2012 «Тепловые сети» для открытых и закрытых систем теплоснабжения должна предусматриваться дополнительно аварийная подпитка химически не обработанной и не деарированной водой, расход которой принимается в количестве 2 % среднегодового объема воды в тепловой сети и присоединенных системах теплоснабжения независимо от схемы присоединения (за исключением систем горячего водоснабжения, присоединенных через водоподогреватели).

Нормативный и фактический часовой расход подпиточной воды в зоне действия источников тепловой энергии приведен в таблице 2.45.

Таблица 2.45 – Нормативный и фактический часовой расход подпиточной воды

Попомети	Для эксплуатационного	Для аварийного
Параметр	режима	режима
Котельная сельского населенного пунк	ста с. Колташево	
Нормативный часовой расход подпиточной воды, м ³ /час	0,098	0,78
Фактический часовой расход подпиточной воды, м ³ /час	0,098	0,78

6.5 Существующий и перспективный баланс производительности водоподготовительных установок и потерь теплоносителя с учетом развития системы теплоснабжения

Существующий и перспективный баланс производительности водоподготовительных установок централизованных котельных с. Колташево и максимального потребления теплопотребляющими установками потребителей приведен в таблицах 2.46 и 2.47.

Таблица 2.46 — Перспективный баланс производительности водоподготовительной установки котельной с. Колташево и максимального потребления теплопотребляющими установками потребителей

Год Величина	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039 - 2043
производительность водоподготовительных установок в аварийных режимах работы, м ³ /ч	0,098	0,098	0,098	0,098	0,098	0,098	0,098	0,098
максимальное потребление теплоносителя теплопотребляющими установками потребителей, м ³ /ч	0	0	0	0	0	0	0	0

В соответствии с п. 6.16 СП 124.13330.2012 «Тепловые сети» для открытых и закрытых систем теплоснабжения должна предусматриваться дополнительно аварийная подпитка химически не обработанной и не деарированной водой, расход которой принимается в количестве 2 % среднегодового объема воды в тепловой сети и присоединенных системах теплоснабжения независимо от схемы присоединения (за исключением систем горячего водоснабжения, присоединенных через водоподогреватели).

По сравнению со Схемой теплоснабжения 2014 года в 2023 году значительные изменения баланса производительности водоподготовительных установок и потерь теплоносителя в системах теплоснабжения сельского населенного пункта с. Колташево отсутствуют.

Сравнительный анализ расчетных и фактических потерь теплоносителя для всех зон действия источников тепловой энергии за период, предшествующий актуализации схемы теплоснабжения, показывает на отсутствие значительных изменений.

Таблица 2.47 – Перспективный баланс производительности водоподготовительной установки центральной котельной с. Колташево

Год Величина	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039 - 2043
производительность водоподготовительных установок в аварийных режимах работы, м ³ /ч	0,780	0,780	0,780	0,780	0,780	0,780	0,780	0,780

ГЛАВА 7. Предложения по строительству, реконструкции, техническому перевооружению и (или) модернизации источников тепловой энергии

7.1. Описание условий организации централизованного теплоснабжения, индивидуального теплоснабжения, а также поквартирного отопления, которое должно содержать в том числе определение целесообразности или нецелесообразности подключения (технологического присоединения) теплопотребляющей установки к существующей системе централизованного теплоснабжения исходя из недопущения увеличения совокупных расходов в такой системе централизованного теплоснабжения, расчет которых выполняется в порядке, установленном методическими указаниями по разработке схем теплоснабжения

Существующая зона теплоснабжения с зоной действия центральной котельной с. Колташево и нагрузка потребителей сохранятся на расчетный период.

Перспективные объекты строительства будут оснащаться индивидуальными установками.

Потребители с индивидуальным теплоснабжением — это частные одноэтажные дома с неплотной застройкой на окраинах села, где индивидуальное теплоснабжение жилых домов сохранится на расчетный период.

Применение поквартирных систем отопления – систем с разводкой трубопроводов в пределах одной квартиры, обеспечивающая поддержание заданной температуры воздуха в помещениях этой квартиры – не предвидится. Возникновение условий ее организации – отключение многоэтажных домов от централизованной системы теплоснабжения – не предполагается.

7.2. Описание текущей ситуации, связанной с ранее принятыми в соответствии с законодательством Российской Федерации об электроэнергетике решениями об отнесении генерирующих объектов к генерирующим объектам, мощность которых поставляется в вынужденном режиме в целях обеспечения надежного теплоснабжения потребителей

Решения об отнесении генерирующих объектов к генерирующим объектам, мощность которых поставляется в вынужденном режиме в целях обеспечения надежного теплоснабжения потребителей, на территории сельского населенного пункта с. Колташево отсутствуют.

7.3. Анализ надежности и качества теплоснабжения для случаев отнесения генерирующего объекта к объектам, вывод которых из эксплуатации может привести к нарушению надежности теплоснабжения (при отнесении такого генерирующего объекта к объектам, электрическая мощность которых поставляется в вынужденном режиме в целях обеспечения надежного теплоснабжения потребителей, в соответствующем году долгосрочного конкурентного отбора мощности на оптовом рынке электрической энергии (мощности) на соответствующий период), в соответствии с методическими указаниями по разработке схем теплоснабжения

Реконструкция действующих источников тепловой энергии с комбинированной выработкой тепловой и электрической энергии для обеспечения перспективных тепловых нагрузок на расчетный период не планируется.

7.4. Обоснование предлагаемых для строительства источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии, для обеспе-

чения перспективных тепловых нагрузок, выполненное в порядке, установленном методическими указаниями по разработке схем теплоснабжения

Подпункт разработан с учетом отсутствия ценовых зон теплоснабжения.

Строительство источников тепловой энергии с комбинированной выработкой тепловой и электрической энергии для обеспечения перспективных тепловых нагрузок на расчетный период не планируется.

Перспективные потребители тепловой нагрузки будут обеспечиваться тепловой энергией от существующих источников тепловой энергии.

7.5. Обоснование предлагаемых для реконструкции и (или) модернизации действующих источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии, для обеспечения перспективных приростов тепловых нагрузок, выполненное в порядке, установленном методическими указаниями по разработке схем теплоснабжения

Подпункт разработан с учетом отсутствия ценовых зон теплоснабжения.

Источники тепловой энергии, функционирующие в режиме комбинированной выработки электрической и тепловой энергии на территории сельского населенного пункта с. Колташево отсутствуют.

Реконструкция и (или) модернизации действующих источников тепловой энергии с комбинированной выработкой тепловой и электрической энергии для обеспечения перспективных тепловых нагрузок на расчетный период не планируется.

Перспективные потребители тепловой нагрузки будут обеспечиваться тепловой энергией от существующих источников тепловой энергии.

7.6 Обоснование предложений по переоборудованию котельных в источники тепловой энергии, функционирующие в режиме комбинированной выработки электрической и тепловой энергии, с выработкой электроэнергии на собственные нужды теплоснабжающей организации в отношении источника тепловой энергии, на базе существующих и перспективных тепловых нагрузок

Реконструкция котельной для выработки электроэнергии в комбинированном цикле на базе существующих и перспективных нагрузок на расчетный период не планируется.

Перспективные режимы загрузки источников тепловой энергии по присоединенной тепловой нагрузке останутся без изменений до конца расчетного периода.

7.7 Обоснование предлагаемых для реконструкции и (или) модернизации котельных с увеличением зоны их действия путем включения в нее зон действия существующих источников тепловой энергии

Реконструкция и (или) модернизация котельных с увеличением зоны их действия путем включения в нее зон действия существующих источников тепловой энергии не предполагается на расчетный период.

7.8. Обоснование предлагаемых для перевода в пиковый режим работы котельных по отношению к источникам тепловой энергии, функционирующим в режиме комбинированной выработки электрической и тепловой энергии

Источников тепловой энергии с комбинированной выработкой тепловой и электрической энергии в сельском населенном пункте с. Колташево нет, перевод в пиковый режим работы котельной не требуется.

7.9 Обоснование предложений по расширению зон действия действующих источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии

Источники тепловой энергии с комбинированной выработкой тепловой и электрической энергии в сельском населенном пункте с. Колташево отсутствуют.

7.10. Обоснование предлагаемых для вывода в резерв и (или) вывода из эксплуатации котельных при передаче тепловых нагрузок на другие источники тепловой энергии

Передача тепловых нагрузок на другие источники тепловой энергии на расчетный период не предполагается. Вывод в резерв и (или) вывода из эксплуатации котельной не требуется.

7.11. Обоснование организации индивидуального теплоснабжения в зонах застройки поселения малоэтажными жилыми зданиями

Покрытие перспективной тепловой нагрузки в сельсовете планируется индивидуальным теплоснабжением, эти зоны на расчетный период не планируется отапливать от централизованных систем, ограниченных своими радиусами эффективного теплоснабжения.

7.12. Обоснование перспективных балансов производства и потребления тепловой мощности источников тепловой энергии и теплоносителя и присоединенной тепловой нагрузки в каждой из систем теплоснабжения поселения

Перспективный баланс тепловой мощности центральной котельной с. Колташево и теплоносителя и присоединенной тепловой нагрузки на нужды отопления зданий ДК, школы, детского сада и сельсовета сохранится на расчетный период.

7.13 Анализ целесообразности ввода новых и реконструкции и (или) модернизации существующих источников тепловой энергии с использованием возобновляемых источников энергии, а также местных видов топлива

Возобновляемые источники энергии в сельском населенном пункте с. Колташево отсутствуют и их ввод не предполагается на расчетный период. Местным видом топлива являются дрова, которое не используется на централизованных источниках из-за низкого КПД.

7.14 Обоснование организации теплоснабжения в производственных зонах на территории поселения

Организация теплоснабжения в производственных зонах на территории поселения на расчетный период не требуется.

7.15 Результаты расчетов радиусов эффективного теплоснабжения

Результаты расчетов радиуса эффективного теплоснабжения источников тепловой энергии представлены в таблице 2.48.

Радиус эффективного теплоснабжения, при котором мощность источника тепловой энергии нетто равна присоединенной тепловой нагрузке потребителей при существующей теплоплотности определен по результатам расчета, сведенным в таблицу 2.49.

Таблица 2.48 — Результаты расчета радиуса теплоснабжения центральной котельной сельского населенного пункта с. Колташево

Параметр	Значение
Площадь действия источника тепла, км ²	0,0223
Число абонентов, шт.	4
Среднее число абонентов на 1 км ²	179,37
Материальная характеристика тепловых сетей, м ²	33,00
Стоимость тепловых сетей, млн. руб.	0,17
Удельная стоимость материальной характеристики, руб./м ²	5151,52
Суммарная присоединённая нагрузка, Гкал/ч	0,33
Теплоплотность зоны действия источника, Гкал/ч·км ²	14,80
Расчетный перепад температур в т/с, °С	40
Оптимальный радиус теплоснабжения, км	3,17
Максимальный радиус теплоснабжения, км	0,71

Таблица 2.49 — Результаты расчета радиуса эффективного теплоснабжения центральной котельной сельского населенного пункта с. Колташево

Параметр	Значение
Площадь окружности действия источника тепла, км ²	1,583
Теплоплотность зоны действия источника, Гкал/(ч км ²)	0,21
Мощность источника тепловой энергии нетто, Гкал/ч	0,87
Радиус эффективного теплоснабжения, км	2,64

Результат расчета показывает, что все потребители, находящиеся в зоне действия центральной котельной с. Колташево расположены в зоне своего эффективного радиуса теплоснабжения.

ГЛАВА 8. Предложения по строительству, реконструкции и (или) модернизации тепловых сетей и сооружений на них

Изменения в предложениях по строительству и реконструкции тепловых сетей за период, предшествующий актуализации схемы теплоснабжения, в том числе с учетом выведенных из эксплуатации тепловых сетей и сооружений на них, отсутствуют.

8.1. Предложения по реконструкции и (или) модернизации, строительству тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом тепловой мощности в зоны с избытком тепловой мощности (использование существующих резервов)

Реконструкция и (или) модернизация, строительство тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом тепловой мощности в зоны с избытком тепловой мощности не планируется. Возможные дефициты тепловой мощности на окраинах населенных пунктов планируется покрывать за счет индивидуальных источников теплоснабжения.

8.2. Предложения по строительству тепловых сетей для обеспечения перспективных приростов тепловой нагрузки под жилищную, комплексную или производственную застройку во вновь осваиваемых районах поселения

Строительство тепловых сетей для обеспечения перспективных приростов тепловой нагрузки под производственную застройку не предполагается.

8.3. Предложения по строительству тепловых сетей, обеспечивающих условия, при наличии которых существует возможность поставок тепловой энергии потребителям от различных источников тепловой энергии при сохранении надежности теплоснабжения

Организация поставок потребителей от различных централизованных источников тепловой энергии не предполагается. Строительство сетей для этой цели не требуется.

8.4. Предложения по строительству, реконструкции и (или) модернизации тепловых сетей для повышения эффективности функционирования системы теплоснабжения, в том числе за счет перевода котельных в пиковый режим работы или ликвидации котельных

Новое строительство, реконструкция и (или) модернизации тепловых сетей для повышения эффективности функционирования системы теплоснабжения, в том числе за счет перевода котельных в «пиковый» режим, не планируется.

8.5. Предложения по строительству тепловых сетей для обеспечения нормативной надежности теплоснабжения

Строительство тепловых сетей для дублирования нерезервированных участков теплотрасс не предполагается. Длины участков не превышают максимально допустимых нерезервируемых.

8.6. Предложения по реконструкции и (или) модернизации тепловых сетей с увеличением диаметра трубопроводов для обеспечения перспективных приростов тепловой нагрузки

Реконструкция и (или) модернизация тепловых сетей с увеличением диаметра трубопроводов не требуется, перспективные приросты тепловой нагрузки на расчётный период предполагаются компенсировать от участков с достаточным диаметром.

8.7. Предложения по реконструкции и (или) модернизации тепловых сетей, подлежащих замене в связи с исчерпанием эксплуатационного ресурса

Существующая тепловая сеть сооружена в 2008 г. Реконструкция сети на расчетный период до 2043 г. потребуется на последнем этапе 2039-2043 гг.

8.8. Предложения по строительству, реконструкции и (или) модернизации насосных станций

Обособленные насосные станции, участвующие непосредственно в транспортировке теплоносителя на территории сельского населенного пункта с. Колташево отсутствуют. Все насосное оборудование находится в здании котельной.

ГЛАВА 9. Предложения по переводу открытых систем теплоснабжения (горячего водоснабжения), отдельных участков таких систем на закрытые системы горячего водоснабжения

Актуальные изменения в предложениях по переводу открытых систем теплоснабжения (горячего водоснабжения), отдельных участков таких систем на закрытые системы горячего водоснабжения за период, предшествующий актуализации схемы теплоснабжения, в том числе с учетом введенных в эксплуатацию переоборудованных центральных и индивидуальных тепловых пунктов, не требуются по причине отсутствия таких сетей.

9.1. Технико-экономическое обоснование предложений по типам присоединений теплопотребляющих установок потребителей (или присоединений абонентских вводов) к тепловым сетям, обеспечивающим перевод потребителей, подключенных к открытой системе теплоснабжения (горячего водоснабжения), отдельным участкам такой системы, на закрытую систему горячего водоснабжения

Источники тепловой энергии сельского населенного пункта с. Колташево функционируют по закрытой системе теплоснабжения. Присоединения теплопотребляющих установок потребителей к тепловым сетям, обеспечивающим перевод потребителей, подключенных к открытой системе теплоснабжения (горячего водоснабжения), отдельным участкам такой системы на закрытую систему горячего водоснабжения, до конца расчетного периода не ожидаются.

9.2. Обоснование и пересмотр графика температур теплоносителя и его расхода в открытой системе теплоснабжения (горячего водоснабжения)

Открытые системы теплоснабжения (горячего водоснабжения) в сельском населенном пункте с. Колташево отсутствуют. Пересмотр графика температур теплоносителя и его расхода не требуется.

9.3. Предложения по реконструкции тепловых сетей в открытых системах теплоснабжения (горячего водоснабжения), на отдельных участках таких систем, обеспечивающих передачу тепловой энергии к потребителям

Открытые системы теплоснабжения в сельском населенном пункте с. Колташево отсутствуют. Реконструкции тепловых сетей для обеспечения передачи тепловой энергии при переходе от открытой системы теплоснабжения (горячего водоснабжения) к закрытой системе горячего водоснабжения не требуется.

9.4. Расчет потребности инвестиций для перевода открытых систем теплоснабжения (горячего водоснабжения), отдельных участков таких систем на закрытые системы горячего водоснабжения

Открытые системы теплоснабжения в сельском населенном пункте с. Колташево отсутствуют.

Инвестиции для перевода открытой системы теплоснабжения (горячего водоснабжения) в закрытую систему горячего водоснабжения не требуются.

9.5. Оценка экономической эффективности мероприятий по переводу открытых систем теплоснабжения (горячего водоснабжения), отдельных участков таких систем на закрытые системы горячего водоснабжения

Согласно Постановлению Правительства Российской Федерации от 22 февраля 2012 г. № 154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения» перевод открытых систем теплоснабжения (горячего водоснабжения), отдельных участков таких систем на закрытые системы горячего водоснабжения оценивается как экономически эффективный в случае, если чистая приведенная стоимость проекта по переводу открытых систем теплоснабжения (горячего водоснабжения), отдельных участков таких систем на закрытые системы горячего водоснабжения на прогнозный период, равный 10 годам, с учетом инвестиционной стадии проекта имеет положительное значение.

При отсутствии экономической эффективности мероприятий по переводу открытых систем теплоснабжения (горячего водоснабжения), отдельных участков таких систем на закрытые системы горячего водоснабжения такие мероприятия могут быть включены в схему теплоснабжения по предложению органа местного самоуправления поселения, городского округа при наличии источника финансирования таких мероприятий в случае необходимости завершения начатых мероприятий по переводу открытых систем теплоснабжения (горячего водоснабжения), отдельных участков таких систем на закрытые системы горячего водоснабжения и обеспечения требований к качеству и безопасности горячей воды.

Открытые системы теплоснабжения в сельском населенном пункте с. Колташево отсутствуют. Перевод открытых систем теплоснабжения (горячего водоснабжения) в закрытую систему (систему ГВС соответственно) на расчетный период не предполагается.

9.6. Расчет ценовых (тарифных) последствий для потребителей в случае реализации мероприятий по переводу открытых систем теплоснабжения (горячего водоснабжения), отдельных участков таких систем на закрытые системы горячего водоснабжения

Согласно Постановлению Правительства Российской Федерации от 22 февраля 2012 г. № 154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения» предложения по источникам финансирования мероприятий, проводимых на теплопотребляющих установках потребителей, обеспечивающих перевод потребителей, подключенных к открытой системе теплоснабжения (горячего водоснабжения), отдельным участкам такой системы, на закрытую систему горячего водоснабжения, подтверждаются соответствующими нормативными правовыми актами и (или) договорами (соглашениями).

Однако мероприятия по переводу открытых систем теплоснабжения (горячего водоснабжения) в закрытые системы горячего водоснабжения не запланированы. Инвестиции для этих мероприятий не требуются.

ГЛАВА 10. Перспективные топливные балансы

Значительные изменения в перспективных топливных балансах за период, предшествующий актуализации схемы теплоснабжения, отсутствуют.

10.1 Расчеты по каждому источнику тепловой энергии перспективных максимальных часовых и годовых расходов основного вида топлива для зимнего, летнего и переходного периодов, необходимого для обеспечения нормативного функционирования источников тепловой энергии на территории поселения, городского округа

Основными видами топлива для всех централизованных котельных сельского населенного пункта с. Колташево является природный газ. Расчеты максимальных часовых и годовых расходов основного вида топлива приведены в таблице 2.50.

По сравнению со Схемой теплоснабжения 2014года в 2023 году значительные изменения отсутствуют.

Таблица 2.50 – Расчеты максимальных часовых и годовых расходов основного вида топлива

Источник	Вид посмодо		Значения расхода топлива по этапам (годам), тыс.м ³ /год									
тепловой	Вид расхода	Период	2023	2024	2025	2026	2027	2028	2029-	2034-	2039 -	
энергии	топлива		2023	2024	2023	2020	2021	2028	2033	2038	2043	
TT	MOROHMOH	зимний	0,050	0,050	0,050	0,050	0,050	0,050	0,050	0,049	0,049	
Централь-	максималь-	летний	0	0	0	0	0	0	0	0	0	
ная котель-	ный часовой	переходной	0,030	0,030	0,030	0,030	0,030	0,030	0,030	0,030	0,029	
ная с. Колташе		зимний	71,30	71,30	71,30	71,30	70,82	70,82	70,34	69,86	69,38	
BO	годовой	летний	0	0	0	0	0	0	0	0	0	
ьо		переходной	68,54	68,54	68,54	68,54	68,08	68,08	67,62	67,15	66,69	

10.2 Расчеты по каждому источнику тепловой энергии нормативных запасов аварийных видов топлива

Результаты расчетов нормативных запасов резервного и аварийного видов топлива по каждому источнику тепловой энергии приведены в таблице 2.51.

Таблица 2.51 – Расчеты нормативных запасов аварийных видов топлива (мазут)

		Этап (год), т/год								
Источник тепловой энергии	2022	2024	2025	2026	2027	2029	2029-	2034-	2039 -	
	2023	2024	2024 2025		2027	2028	2033	2038	2043	
Центральная котельная с. Колташево	1,72	1,72	1,72	1,72	1,72	1,72	1,72	1,72	1,72	

10.3 Вид топлива, потребляемый источником тепловой энергии, в том числе с использованием возобновляемых источников энергии и местных видов топлива

Основным видом топлива для котельной сельского населенного пункта с. Колташево является природный газ.

Индивидуальные источники тепловой энергии в частных жилых домах в качестве топлива используют природный газ, уголь и дрова.

Возобновляемые источники энергии отсутствуют.

Местным видом топлива в сельском населенном пункте с. Колташево являются дрова. Существующие источники тепловой энергии не используют местные виды топлива в качестве основного.

10.4 Виды топлива, их доля и значение низшей теплоты сгорания топлива, используемые для производства тепловой энергии по каждой системе теплоснабжения

В качестве основного вида топлива для котельной с. Колташево используется природный газ. Доля использования составляет 100 %. Значения низшей теплоты сгорания топлива и его доля по источникам приведены в таблице 2.52.

Таблица 2.52 – Значение низшей теплоты сгорания топлива, используемые для производства тепловой энергии по каждой системе теплоснабжения

№ пп	Система теплоснаб- жения	Топливо	Объем по- требления, тыс.м ³	Доля потребления, %	Значение низшей теплоты сгорания топлива, ккал/м3
1.	Котельная с. Колташево	Природный газ	148,0	100,0	7880

10.5 Преобладающий в поселении вид топлива, определяемый по совокупности всех систем теплоснабжения, находящихся в соответствующем поселении

Преобладающий вид топлива по совокупности всех систем теплоснабжения, находящихся в сельском населенном пункте природный газ.

10.6 Приоритетное направление развития топливного баланса поселения

Приоритетным направлением развития топливного баланса сельского населенного пункта с. Колташево является сохранение существующего потребления природного газа и полный перевод индивидуальных источников на газообразное топливо.

ГЛАВА 11. Оценка надежности теплоснабжения

Расчет вероятности безотказной работы (ВБР) каждого нерезервированного теплопровода относительно каждой тепловой камеры, входящего в состав теплопроводов, выполнен в соответствии с алгоритмом Приложения 18 Методических указаний по разработке схем теплоснабжения с учетом всех предложений по реконструкции и (или) модернизации теплопроводов с увеличением их диаметра, указанных в главе 8 «Предложения по строительству, реконструкции и (или) модернизации тепловых сетей» обосновывающих материалов к схеме теплоснабжения, а также с учетом «Информационных материалов по разработке, актуализации и утверждению схем теплоснабжения» — Приложение к письму «О направлении разъяснений» заместителя Министра энергетики Российской Федерации (МИНЭНЕРГО РОССИИ) от 12.04.2024 № СП-5908/07.

Тепловые сети сельского населенного пункта с. Колташево состоят из не резервируемых участков. При выполнении оценки показателей надежности теплоснабжения потребителя рассматривается расчетный уровень теплоснабжения, так как пониженный (аварийный), характеризующийся подачей потребителям аварийной нормы тепловой энергии во время ликвидации отказов в резервируемой части тепловых сетей, технически невозможен из-за отсутствия резервируемых участков.

При расчете учтены предложения по реконструкции и (или) модернизации теплопроводов с увеличением их диаметра, указанные в главе 8 «Предложения по строительству, реконструкции и (или) модернизации тепловых сетей» обосновывающих материалов к схеме теплоснабжения.

11.1 Метод и результаты обработки данных по отказам участков тепловых сетей (аварийным ситуациям), средней частоты отказов участков тепловых сетей (аварийных ситуаций) в каждой системе теплоснабжения

Интенсивность отказов каждой тепловой сети (без резервирования) принята зависимостью от срока ее эксплуатации (рисунок 2.6).

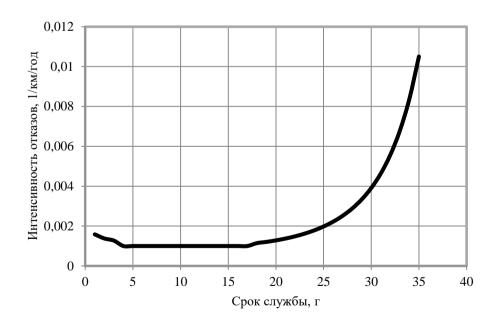


Рисунок 2.6 – Интенсивность отказов в зависимости от срока эксплуатации участка тепловой сети

Для описания параметрической зависимости интенсивности отказов использована зависимость от срока эксплуатации, следующего вида, близкая по характеру к распределению Вейбулла:

$$\lambda(t) = \lambda_0(0.1 \cdot \tau)^{\alpha - 1},$$

где т – срок эксплуатации участка, лет.

Характер изменения интенсивности отказов зависит от параметра α : при α <1, она монотонно убывает, при α >1 - возрастает; при α =1 функция принимает вид $\lambda(t) = \lambda_0 = Const.$ А λ_0 - это средневзвешенная частота (интенсивность) устойчивых отказов в конкретной системе теплоснабжения.

Для распределения Вейбулла использованы следующие эмпирические коэффициенты α: 0,8 — средневзвешенная частота (интенсивность) отказов для участков тепловой сети с продолжительностью эксплуатации от 1 до 3 лет;

- 1 средневзвешенная частота (интенсивность) устойчивых отказов участков в конкретной системе теплоснабжения при продолжительности эксплуатации участков от 3 до 17 лет;
- $0.5 \times \exp(\tau/20)$ средневзвешенная частота (интенсивность) отказов для участков тепловой сети с продолжительностью эксплуатации от 17 и более лет.

Параметр потока отказов участка тепловой сети определяется по формуле

$$\omega = \lambda \cdot L$$
,

где L – протяженность участка тепловой сети.

Год ввода в эксплуатацию, протяженности тепловых сетей приведены в таблице 2.53.

Таблица 2.53 — Расчет вероятности безотказной работы теплотрасс центральной котельной Сельского населенного пункта с. Колташево

Теплотрасса	Год ввода в эксплу- атацию	Срок служ- бы	Средневзвешен- ная частота от- казов, 1/(км·год)	Протяжен- ность тепло- трассы, км	Интенсив- ность отка- зов на участ- ке, 1/год	Вероят- ность без- отказной работы теплотрас- сы
Центральная котельная с. Колташево	15	0,001	0,165	0,0001650	0,99753	15

Перспективный расчет средней частоты отказов участков тепловых сетей (аварийных ситуаций) в централизованных котельных, приведен в таблице 2.54.

Таблица 2.54 — Расчет средней частоты отказов участков тепловых сетей (аварийных ситуаций) в центральной котельной с. Колташево

		Этап (год)									
	2024 20	2025	2026	2027	2028	2029-	2034-	2039 -			
Показатель		2023	2020	2027		2033	2038	2043			
Число нарушений в подаче тепловой энергии, 10 ⁻³ 1/год	0,17	0,17	0,19	0,20	0,21	0,33	0,64	0,23			

11.2 Метод и результаты обработки данных по восстановлениям отказавших участков тепловых сетей (участков тепловых сетей, на которых произошли аварийные ситуации), среднего времени восстановления отказавших участков тепловых сетей в каждой системе теплоснабжения

Среднее время до восстановления участка теплопровода вычисляться по формуле

$$z = 2.91 \times [1 + (20,89 - 1,88 \cdot L) \cdot d^{1,2}],$$
ч

где L – протяженность участка тепловой сети, км;

d – диаметр участка тепловой сети, м.

Среднее время до восстановления участка теплопровода составляет 11,591 ч.

Расчет приведенной продолжительности прекращений подачи тепловой энергии в системе теплоснабжения приведен в таблице 2.55.

Таблица 2.55 — Расчет приведенной продолжительности прекращений подачи тепловой энергии в системе теплоснабжения центральной котельной с. Колташево

	Этап (год)							
	2024	2025	2026	2027	2028	2029-	2034-	2039 -
Показатель	2024	2023	2020	2027	2028	2033	2038	2043
Приведенная продолжительность прекращений подачи тепловой	0,002	0,002	0,002	0,002	0,002	0,004	0,007	0,003
энергии, час								

11.3 Результаты оценки вероятности отказа (аварийной ситуации) и безотказной (безаварийной) работы системы теплоснабжения по отношению к потребителям, присоединенным к магистральным и распределительным теплопроводам

В соответствии с СП 124.13330.2012 «СНиП 41-02-2003 Тепловые сети» минимально допустимые показатели вероятности безотказной работы следует принимать (пункт «6.26») для:

- источника теплоты $P_{\rm ut} = 0.97$;
- тепловых сетей $P_{\rm TC} = 0.9$;
- потребителя теплоты $P_{\text{пт}} = 0.99$;
- системы централизованного теплоснабжения (СЦТ) в целом $P_{\text{сит}} = 0.9 \times 0.97 \times 0.99 = 0.86$.

Вероятность безотказного теплоснабжения j-го потребителя или вероятность обеспечения в течение отопительного периода температуры внутри отапливаемого помещения j-го потребителя не ниже минимально допустимого значения определяется по формуле:

$$P_i = exp \left(-[p_0 \cdot \Sigma_f(\omega_f \tau^{\text{paB}}_{i,f})] \right)$$

где $au^{\mathrm{paB}}_{j,f}$ – повторяемость температуры наружного воздуха $t^{\mathrm{H.B}}$ ниже $t^{\mathrm{paB}}_{j,f}$, ч;

 $t^{\text{рав}}_{j,f}$ — температура наружного воздуха при которой время восстановления f-го участка z^{B}_{f} равно временному резерву j-го потребителя, т.е. время снижения температуры воздуха внутри отапливаемого помещения j-го потребителя до минимально допустимого значения $t^{\text{B}}_{i,min}$.

С помощью установления значений величин $t^{\text{рав}}_{j,f}$ и $\tau^{\text{рав}}_{j,f}$ выделяется доля отопительного периода, в течении которого выход в аварию f-го участка тепловой сети влияет на величину P_j (вероятности безотказного теплоснабжения j-го потребителя).

Расчет надежности теплоснабжения не резервируемых участков тепловых сетей приведен в таблице 2.56.

Таблица 2.56 — Расчет вероятности безотказной работы системы теплоснабжения котельной сельского населенного пункта с. Колташево

Система теп- лоснабжения	Вероят- ность без- отказной работы теп- лотрассы, P_{TC}	Вероятность безотказной работы источника теплоснабжения, Рис	Вероят- ность без- отказной работы по- требителя теплоты, $P_{\Pi T}$	Вероятность безотказной работы системы теплоснабжения, $P_{\text{СЦТ}}$	Минимальная вероятность безотказной работы системы теплоснабжения*, $P_{\text{СЦТ}}$
Центральная котельная с. Колташево	0,99753	0,97	0,90	0,87	0,86

^{*} – СНиП 41-02-2003 «Тепловые сети».

Анализ полученных данных показывает, что существующая надежность системы теплоснабжения центральной котельной не соответствует норме и может быть обеспечена своевременным обновлением тепловых сетей.

Расчет вероятности безотказной работы теплотрассы в системе теплоснабжения с. Колташево приведен в таблице 2.57.

Таблица 2.57 — Расчет вероятности безотказной работы теплотрассы в системе теплоснабжения центральной котельной с. Колташево

		Этап (год)								
	2024 2025	2026	2027	2028	2029-	2034-	2039 -			
Показатель		2023	2020	2027	2028	2033	2038	2043		
Вероятность безотказной работы теплотрассы	0,997	0,997	0,997	0,996	0,996	0,992	0,981	1,000		

11.4 Результаты оценки коэффициентов готовности теплопроводов к несению тепловой нагрузки

Для оценки надежности расчетного уровня используется коэффициент готовности K_j , представляющий собой вероятность того, что в произвольный момент времени будет обеспечен расчетный уровень теплоснабжения j-го потребителя (среднее значение доли отопительного сезона, в течение которой теплоснабжение j-го потребителя не нарушается).

Коэффициент готовности к обеспечению расчетного теплоснабжения ј-го потребителя определяется по формуле

$$K_i = p_0 + \sum_{\mathbf{f} \in \mathbf{F}_i} p_f$$

где F_j – множество участков тепловой сети, выход которых в аварию не нарушает расчетный уровень теплоснабжения j-го потребителя;

 p_0 — стационарная вероятность рабочего состояния сети:

$$p_0 = 1/(1+\sum_{i=1}^{N} \omega_i/\mu_i);$$

 p_f — вероятность состояния сети, соответствующая отказу f-го элемента:

$$p_f = \omega_f / \mu_f \cdot p_0;$$

где ω – параметр потока отказов элемента тепловой сети, 1/ч;

μ – интенсивность восстановления элемента тепловой сети, 1/ч:

$$\mu = 1/z$$

z – среднее время до восстановления участка теплопровода.

Стационарные вероятности состояний $TC(p_0 u p_f)$ определяются для марковского стационарного процесса смены состояний TC с простым пуассоновским распределением потока отказов.

При предположении, что во время восстановления отказавшего элемента отказы других элементов не происходят, то стационарные вероятности вычисляются по следующим зависимостям:

Согласно СП 124.13330.2012 «Тепловые сети» (п. 6.29) минимально допустимый коэффициент готовности СЦТ к исправной работе K_r принимается 0,97.

Таблица 2.58 – Коэффициенты готовности теплопроводов к несению тепловой нагрузки

Источник тепловой энергии	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039- 2043
Котельная с. Колташево	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

Тепловая сеть – тупиковая (не имеет кольцевой части), при выходе из строя одного ее из элементов полностью прекращается теплоснабжение потребителей, расположенных за этим элементом, при этом теплоснабжение остальных потребителей не нарушается.

11.5 Результатов оценки недоотпуска тепловой энергии по причине отказов (аварийных ситуаций) и простоев тепловых сетей и источников тепловой энергии

Средний суммарный недоотпуск тепловой энергии ј-тому потребителю в течение отопительного периода определяется по формуле:

$$\overline{Q}_{j} = \left(\theta_{j}^{p} - \sum_{f=0} p_{f} q_{i,j}\right) \times \left(\tau_{1}^{p} - \tau_{2}^{p}\right) \times \frac{t_{j}^{\text{B.p}} - t^{\text{H.cp}}}{t_{j}^{\text{B.p}} - t^{\text{H.p}}} \tau^{\text{ot}}$$

где θ^{p}_{j} – расчетный при $t^{h.p.}$ часовой расход теплоносителя у j-того потребителя, т/ч;

 $q_{\rm i,j}$ – часовой расход теплоносителя у j-того потребителя при отказе f-того участка тепловой сети, т/ч;

 t^{p}_{1} — расчетная температура теплоносителя при температуре наружного воздуха равной $t^{\text{н.р.}}$ в подающем теплопроводе тепловой сети, °C;

 τ^{p}_{2} — расчетная температура теплоносителя при температуре наружного воздуха равной $t^{\text{н.р.}}$ в обратном теплопроводе тепловой сети, °C.

 $t^{\text{в р.}}$ – расчетная температура внутри отапливаемого здания, °С;

 $t^{\text{н.р.}}$ – расчетная температура наружного воздуха для проектирования систем отопления, °С;

 $t^{\text{н cp.}}$ — средняя за отопительный период температура наружного воздуха, °C

 $\tau^{\mbox{\tiny OT}}-$ продолжительность отопительного периода, ч;

Приведенный объем недоотпуска тепла в результате нарушений в подаче тепловой энергии в системе теплоснабжения с. Колташево приведен в таблице 2.59.

Таблица 2.59 — Приведенный объем недоотпуска тепла в результате нарушений в подаче тепловой энергии в системе теплоснабжения с. Колташево

Источник тепловой	Приведенный объем недоотпуска тепла в результате нарушений в подаче тепловой энергии, Гкал								
энергии	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039- 2043	
Котельная с. Колташево	0,0007	0,0007	0,0007	0,0007	0,0007	0,0013	0,0023	0,0010	

11.6 Предложения, обеспечивающие надежность систем теплоснабжения

Тепловой сети содержат участки, выработавшие эксплуатационный ресурс (работающие 25 лет и более), и являются потенциально ненадежными. Согласно алгоритму расчета показателей надежности теплоснабжения потребителя, присоединенного к тепловой сети системы теплоснабжения, методических указаний по разработке схем теплоснабжения, такие участки выделяются в отдельную группу и после дополнительного анализа их состояния рекомендуются к замене.

С учетом принятых предложений по реконструкции и (или) модернизации теплопроводов, указанных в главе 8 «Предложения по строительству, реконструкции и (или) модернизации тепловых сетей» обосновывающих материалов к схеме теплоснабжения, расчетная вероятность безот-казной работы системы теплоснабжения выше минимальной $P_{\text{тс}} = 0.9$ с 2043 г.

Разработка дополнительных, в том числе базовых, предложений по мероприятиям, направленным на достижение нормативных показателей надежности теплоснабжения:

- резервирование головного участка на коллекторах источника тепловой энергии;
- резервирование головного участка за счет строительства только подающего теплопровода;
- строительство резервных нагруженных связок между теплопроводами;
- организация резервных нагруженных связок между источниками тепловой энергии;
- изменение "уставок" в системе регулирования производительности насосных агрегатов, насосных станций с целью обеспечения режимов циркуляции теплоносителя в аварийных ситуациях;
 - изменение конфигурации включения агрегатов на насосных станциях;
- строительство контрольно-распределительных пунктов на ответвлениях. не требуется.

Таким образом, в рассматриваемой тупиковой сети $P_j < P_{TC}$ после реализованных мероприятий по ремонту тепловых сетей, то резервирования сети не требуется. Необходимость определения объема резервирования, обеспечивающий нормативные значение показателей отсутствует.

Применение на источниках тепловой энергии рациональных тепловых схем с дублированными связями и новых технологий, обеспечивающих готовность энергетического оборудования, установка резервного оборудования, организация совместной работы нескольких источников тепловой энергии, взаимное резервирование тепловых сетей смежных районов поселения, устройство резервных насосных станций, установка баков-аккумуляторов не требуется.

По сравнению со Схемой теплоснабжения 2023 года в 2024 году скорректированы значения показателей надежности в соответствии с предлагаемыми мероприятиями по обновлению тепловых сетей и их сокращении, инвентаризации сетей обслуживающей организацией.

11.7 Сценарии развития аварий в системах теплоснабжения с моделированием гидравлических режимов работы таких систем

При выполнении оценки показателей надежности теплоснабжения потребителя должный рассматриваться два уровня теплоснабжения потребителей — расчетный и пониженный (аварийный), характеризующийся подачей потребителям аварийной нормы тепловой энергии во время ликвидации отказов в резервируемой части тепловых сетей.

При авариях (отказах) в системе централизованного теплоснабжения в течение всего ремонтно-восстановительного периода должна обеспечиваться:

- подача 100 % необходимой теплоты потребителям первой категории (если иные режимы не предусмотрены договором);
- подача теплоты на отопление и вентиляцию жилищно-коммунальным и промышленным потребителям второй и третьей категорий в размерах, указанных в таблице 2.60;

Таблица 2.60 — Допустимое снижение подачи теплоты на отопление и вентиляцию жилищнокоммунальным и промышленным потребителям второй и третьей категорий

Наименование показателя	Расчетная температура наружного воздуха для проектирования отопления t_0 , °C							
	минус 10	минус 20	минус 30	минус 40	минус 50			
Допустимое снижение подачи теплоты, %,	78	84	87	89	91			
до								
Т. С.				_	U			

Примечание - Таблица соответствует температуре наружного воздуха наиболее холодной пятидневки обеспеченностью 0,92.

В системе теплоснабжения резервные источники отсутствуют, передача части тепловой нагрузи на другие источники невозможна. В связи с чем аварии связанные с полным прекращением подачи тепла с источника или функционирования коллектора тепловой сети приведут к остановке работы всей системы теплоснабжения и результатами для всех потребителей, приведенными в Разделе 16 пояснительной записки Схемы теплоснабжения.

При возникновении аварийной ситуации все не отключенные потребители переводят на лимитированное теплоснабжение и сокращают расход теплоносителя, поступающего к потребителю.

При допустимой возможности снижения температуры помещения 12 °C (для жилых и общественных зданий) коэффициент лимитированного теплоснабжения составляет 0,86.

Переключения запорно-регулирующей арматуры на тепловой сети, позволяющей обеспечить циркуляцию теплоносителя в тепловой сети до и после аварийного участка, технически невозможны.

Моделированием гидравлических режимов работы таких систем выполнено с помощью программы Zulu Thermo. Графический вид моделей систем теплоснабжения приведен на рисунке 2.7.

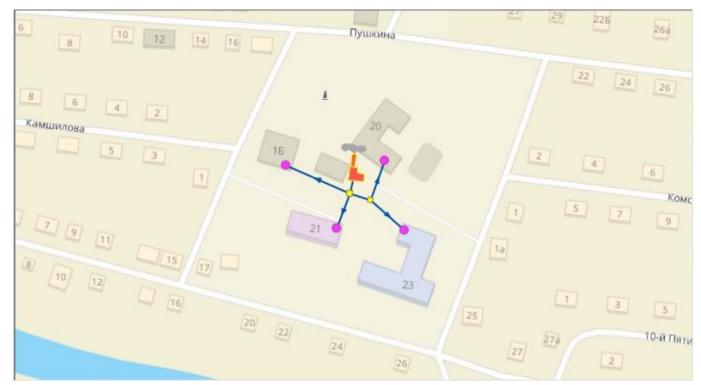


Рисунок 2.7 – Модель системы теплоснабжения котельной с. Колташево

11.7.1 Отказе элементов тепловых сетей

Оценка надежности теплоснабжения в аварийных режимах теплоснабжения выполняется на основании результатов анализа расчетов возможности обеспечения нормативных показателей надежности теплоснабжения с перспективной нагрузкой при отказе головного участка теплопровода на одном (с наибольшим диаметром) из выводов тепловой мощности от источника тепловой энергии, однако котельные имеют по одному выводу.

Кольцевые тепловые сети в системе теплоснабжения отсутствуют, отказы элементов тепловых сетей в их параллельных или резервируемых участках невозможны. Переключения существующей запорно-регулирующей арматуры, обеспечивающей циркуляцию теплоносителя в нижних (после головного участка) участках тепловой сети, технически невозможно.

Наиболее вероятным отказом является отключение одного отвода от коллектора. Одновременное отключение двух и более отводов маловероятно и является аварийным режимом близким к полному прекращению работы всей системы теплоснабжения.

Для потребителей, находящихся в аварийной зоне и оставшихся без поставки тепла, время понижения температуры внутреннего воздуха до 12 °C при различной градации наружных температур представлено в таблице 2.65. Аккумуляционная способность зданий принята в среднем 30 часов.

Расчет времени снижения температуры, час, в жилых зданиях до $+12~^{\circ}\mathrm{C}$ при внезапном прекращении теплоснабжения определено:

$$t = \beta \cdot \ln (t_{B} - t_{H}) / (t_{B.a} - t_{H}),$$

где β - коэффициент аккумуляции помещения (здания), час;

 $t_{\scriptscriptstyle B}$ – температура в отапливаемом помещении, которая была в момент начала исходного события, 20 °C;

t_н − температура наружного воздуха, °С;

 $t_{\rm B.a}$ – внутренняя температура, которая устанавливается критерием отказа теплоснабжения (+12 °C для жилых зданий).

Наиболее сложным отказом является отключение отвода от коллектора с максимальной тепловой нагрузкой.

Результаты гидравлических расчетов в аварийной ситуации представлены пьезометрическим графиком на рисунке 2.8.

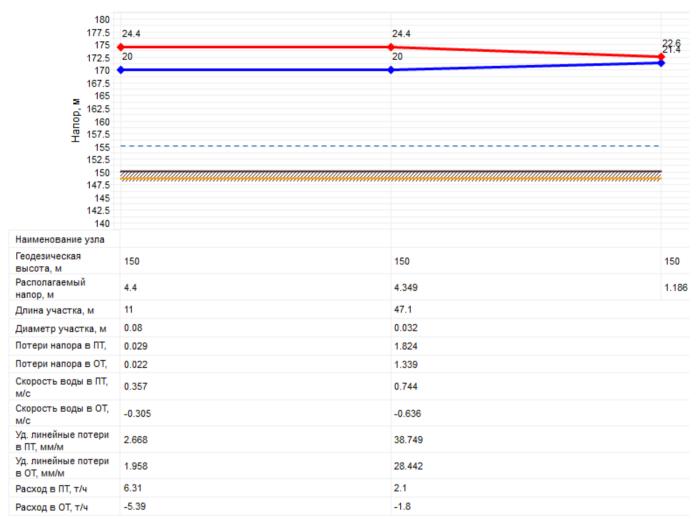


Рисунок 2.8 – Пьезометрический график от источника теплоснабжения (Котельной с. Колташево) до самого удаленного потребителя

Таблица 2.61 – Время снижения температуры внутри отапливаемого помещения

	1 11 11
Температура наружного воздуха, °С	Время снижения температуры воздуха внутри отапливаемо-
	го помещения до +12°C, час
-37	4,5
-35	4,7
-30	5,2
-25	5,9
-20	6,7
-15	7,8
-10	9,3
-5	11,6

Температура наружного воздуха, °С	Время снижения температуры воздуха внутри отапливаемо-
	го помещения до +12°C, час
0	15,3
5	22,9
8	33,0

11.7.2 Аварийные режимы работы систем теплоснабжения, связанных с прекращением подачи тепловой энергии

Наиболее вероятное снижение подачи тепловой энергии возникает при отказе одного из котлов на источнике теплоснабжения, наиболее сложное – котла наибольшей располагаемой мощности.

Результаты гидравлических расчетов в аварийной ситуации представлены пьезометрическим графиком на рисунке 2.9.

Рисунок 2.9 – Пьезометрический график от источника теплоснабжения (котельной с. Колташево) до самого удаленного потребителя в аварийной ситуации

В заключение сложившейся ситуации при моделировании аварии можно сделать вывод, что установка дроссельных устройств у потребителей, производимая при наладке сетей, может обеспечить правильное распределение теплоносителя по потребителям лишь в расчетном гидравличе-

ском режиме и близких к нему, но существенно ограничивает возможности управления переменными нормальными режимами и практически не обеспечивает управляемость сети при авариях.

Причиной тому служит, в первую очередь, отсутствие на тепловых сетях и у потребителей оборудования с автоматическим регулированием.

При отказе элемента тепловых сетей, расположенном не на коллекторе, и его отключении, например на отводе от коллектора, в теплоснабжающей системе устанавливается аварийный гидравлический режим с повышенным по сравнению с нормальным режимом суммарным расходом теплоносителя у потребителей (таблице 2.62). В неуправляемых системах (отсутствие автоматического регулирования) потребители получают больше, чем расчетное количество теплоносителя.

При снижении располагаемой мощности котельной, потребители, удаленные от теплоисточника, могут вообще не получить требуемое тепло, т.е. попасть в состояние отказа не будучи отключенными от тепловой сети.

Значения величин снижения температуры в зданиях потребителей приведено в таблица 2.62.

Таблица 2.62 — Результаты расчета расхода сетевой воды в системах отопления (CO) и температуры в зданиях потребителей тепла котельной с. Колташево

Режим	Нор	мальный р	режим	лектора с м	ие отвода кол- иаксимальной рузкой	Отключение котла на источнике теплоснаб- жения		
Sys	Расчетная нагрузка на отопление, Гкал/ч	Расход сетевой воды на СО, т/ч	Расчетная темп. внутреннего воздуха для СО,°С	Расход сетевой воды на СО, т/ч	Температура внутреннего воздуха СО, °С	Расход сетевой воды на СО, т/ч	Температура внутреннего воздуха СО, °С	
17	0,05	2,06	20,40	2,10	20,50	2,06	15,50	
19	0,18	7,15	20,10	авар.откл.	авар.откл.	7,15	15,20	
23	0,03	1,18	20,20	1,21	20,30	1,18	15,40	
25	0,07	2,93	20,10	3,00	20,30	2,93	15,30	

ГЛАВА 12. Обоснование инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию

12.1 Оценка финансовых потребностей для осуществления строительства, реконструкции, технического перевооружения и (или) модернизации источников тепловой энергии и тепловых сетей

Величина необходимых инвестиций на реконструкцию источника тепловой энергии представлена в таблице 2.63. Инвестиции на строительство новых, техническое перевооружение существующего источника тепловой энергии и тепловых сетей не требуются. Реконструкция тепловых сетей предполагается на последний этап расчетного периода до 2043 г.

Таблица 2.63 – Инвестиции в реконструкцию источника тепловой энергии – центральную котельную

No			Потре	бность	в фина	ансовы	х средс	гвах, ты	с. рублей	
пп	Наименование мероприя- тия	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039 - 2043	Всего
1	Замена котлов с. Колташево			300	300					600
2	Замена сетевых насосов		100							100
3	Реконструкция тепловых сетей центральной котельной (162 п.м.)								400,785	401
Bce	Fro	0	100	300	300	0	0	0	401	1101

12.2 Обоснованные предложения по источникам инвестиций, обеспечивающих финансовые потребности для осуществления строительства, реконструкции и технического перевооружения источников тепловой энергии и тепловых сетей

Источниками необходимых инвестиций, обеспечивающих финансовые потребности указаны в таблице 2.64. Согласно программе комплексного развития систем коммунальной инфраструктуры муниципального образования Кетовского района до 2020 г. финансирование реконструкции центральной котельной планируется за счет внебюджетных средств.

Таблица 2.64 – Инвестиции в строительство источников тепловой энергии и реконструкцию тепловых сетей

№ пп	Мероприятие	Источник финансирования
1.	Замена котлов с. Колташево	Внебюджетные средства
2.	Замена сетевых насосов	Внебюджетные средства
3.	Реконструкция тепловых сетей центральной котельной (162 п.м.)	Внебюджетные средства

12.3 Расчеты экономической эффективности инвестиций

Показатель эффективности реализации мероприятия приведенный в таблице 2.65 рассчитан при условии обеспечения рентабельности мероприятий инвестиционной программы со средним сроком окупаемости 10 лет.

Таблица 2.65 – Расчеты эффективности инвестиций

No॒			Год							
пп	Показатель	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039 - 2043	Всего
1	Цена реализации мероприятия, тыс. р.	0	100	300	300	0	0	0	401	1101
2	Текущая эффективность мероприятия 2024 г.	0	0	0	0	0	0	0	0	0
3	Текущая эффективность мероприятия 2025 г.		10	10	10	10	50	50	50	190
4	Текущая эффективность мероприятия 2026 г.			30	30	30	150	150	150	540
5	Текущая эффективность мероприятия 2027 г.				30	30	150	150	150	510
6	Текущая эффективность мероприятия 2028 г.					0	0	0	0	0
7	Текущая эффективность мероприятия 2029-33 гг.						0	0	0	0
8	Текущая эффективность мероприятия 2034-38 гг.							0	0	0
9	Текущая эффективность мероприятия 2039-43 гг.								40	40
10	Эффективность мероприятия, тыс. р.	0	10	40	70	70	350	350	390	1280
11	Текущее соотноше	ние цен	ы реали	изации м	меропри	и китки	их эффект	ивности		1,16

Экономический эффект мероприятий достигается за счет сокращения затрат в результате возможных отказов котельной и теплосети, приводящих к недоотпуску тепловой энергии и затрат на ликвидацию возможных последствий.

12.4 Расчеты ценовых (тарифных) последствий для потребителей при реализации программ строительства, реконструкции, технического перевооружения и (или) модернизации систем теплоснабжения

Мероприятия предусмотренные схемой теплоснабжения инвестируются из внебюджетных средств. Потребители тепловой энергии являются бюджетными организациями. Увеличение цены на единицу тепловой энергии при выполнении этих мероприятий не предполагается, для исключения отказа потребителей от тепловой энергии централизованного источника и переходов на индивидуальные.

ГЛАВА 13. Индикаторы развития систем теплоснабжения поселения, городского округа, города федерального значения

Глава разработана с учетом отсутствия ценовых зон теплоснабжения.

Индикаторы развития систем теплоснабжения с. Колташево на весь расчетный период приведены в таблице 2.67.

Таблица 2.66 – Индикаторы развития систем теплоснабжения с Колташево

№ п/п	Год Индикатор	Ед. изм.	2023	2024	2025	2026	2027	2028	2029-	2034-	2039-
1.	количество прекращений подачи тепловой энергии, теплоносителя в результате технологических нарушений на теп-	Ед.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 6	0,000
2.	ловых сетях количество прекращений подачи тепловой энергии, теплоносителя в результате технологических нарушений на источниках тепловой энергии	Ед.	-	-	-	-	-	-	-	-	-
3.	удельный расход условного топлива на единицу тепловой энергии, отпускаемой с коллекторов источников тепловой энергии (отдельно для тепловых электрических станций и котельных)	Тут/Гкал	0,176	0,176	0,176	0,176	0,176	0,176	0,176	0,176	0,176
4.	отношение величины технологических потерь тепловой энергии, теплоносителя к материальной характеристике тепловой сети	Гкал/м²	1,599 1	1,596 7	1,512 4	1,512 4	1,428 5	1,428 5	1,176 4	1,008 5	0,756 4
5.	коэффициент использования установленной тепловой мощности		0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349
6.	удельная материальная характеристика тепловых сетей, приведенная к расчетной тепловой нагрузке	м ² /Гкал	0,039	0,039	0,039	0,039	0,039	0,039	0,039	0,039	0,039
7.	доля тепловой энергии, выработанной в комбинированном режиме (как отношение величины тепловой энергии, отпущенной из отборов турбоагрегатов, к общей величине выработанной тепловой энергии в границах поселения, городского округа, города федерального значения)	%	-	-	-	-	-	-	-	-	-
8.	удельный расход условного топлива на отпуск электрической энергии	Тут/кВт	-	-	-	-	-	-	-	-	-
9.	коэффициент использования теплоты топлива (только для источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой		-	-	-	-	-	-	-	-	-

№ п/п	Год Индикатор	Ед. изм.	2023	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039- 2043
	энергии)								2033	2030	2043
10.	доля отпуска тепловой энергии, осуществляемого потребителям по приборам учета, в общем объеме отпущенной тепловой энергии	%	0	0	10	20	30	40	50	75	100
11.	средневзвешенный (по материальной характеристике) срок эксплуатации тепловых сетей (для каждой системы теплоснабжения)	лет	15	16	17	18	19	20	25	30	1
12.	отношение материальной характеристики тепловых сетей, реконструированных за год, к общей материальной характеристике тепловых сетей (фактическое значение за отчетный период и прогноз изменения при реализации проектов, указанных в утвержденной схеме теплоснабжения) (для каждой системы теплоснабжения)	%	0	0	0	0	0	0	0	0	100
13.	отношение установленной тепловой мощности оборудования источников тепловой энергии, реконструированного за год, к общей установленной тепловой мощности источников тепловой энергии (фактическое значение за отчетный период и прогноз изменения при реализации проектов, указанных в утвержденной схеме теплоснабжения)	%	0	0	0	50	50	0	0	0	0
14.	Отсутствие зафиксированных фактов нарушения антимоно- польного законодательства (выданных предупреждений, предписаний), а также отсутствие применения санкций, предусмотренных Кодексом Российской Федерации об ад- министративных правонарушениях, за нарушение законода- тельства Российской Федерации в сфере теплоснабжения, антимонопольного законодательства Российской Федера- ции, законодательства Российской Федерации о естествен- ных монополиях	ШТ	0	0	0	0	0	0	0	0	0

По сравнению со Схемой теплоснабжения с. Колташево 2023 года в 2024 году выполнен рерасчет индикаторов развития систем теплоснабжения

ГЛАВА 14. Ценовые (тарифные) последствия

Глава 14 разработана с четом отсутствия ценовых зон теплоснабжения.

14.1 Тарифно-балансовые расчетные модели теплоснабжения потребителей по каждой системе теплоснабжения

Анализ влияния реализации проектов схемы теплоснабжения, предлагаемых к включению в инвестиционную программу теплоснабжающих организаций, выполнен с учетом того, что собственник и основной потребитель является муниципальным. Инвестиции в строительство, реконструкцию и перевооружение осуществляются главным образом за счет бюджетной составляющей. Тарифные источники финансирования могут быть определены в финансовом плане организации при утверждении инвестиционной программы теплоснабжающей организации.

При этом необходимо отметить, что схема теплоснабжения является предпроектным документом, а утверждаемый тариф на тепловую энергию в рамках регулирования зависит от установленного предельного индекса изменения размера платы граждан за коммунальные услуги.

Долгосрочные параметры регулирования и тарифов на тепловую энергию на 2023 год потребителям ООО «Уют» утверждены приказом департаментом государственного регулирования цен и тарифов Курганской области № 44-7 от 19.12.2018 г.

Прогнозные значения определены с учетом имеющихся производственных расходов товарного отпуска тепловой энергии за 2023 г., принятые по материалам тарифных дел, индексов инфляции, а также изменения технико-экономических показателей работы источников теплоснабжения при реализации мероприятий Схемы.

Показатели тарифно-балансовой модели по каждой системе теплоснабжения приведены в таблице 2.67.

Таблица 2.67 – Показатели тарифно-балансовой модели по каждой системе теплоснабжения

			1	1	1	1	1	1	1	1
No	Показатель	2023	2024	2025	2026	2027	2028	2029-	2034-	2039-
Π/Π		2028	2021	2028	2020	2027	2020	2033	2038	2043
			ево							
1.	Индексы-дефляторы МЭР	104,3	104,3	104,3	104,3	104,3	104,3	113,5	113,5	113,5
2.	Установленная тепловая мощность, Гкал/ч	0,516	0,516	0,516	0,516	0,516	0,516	0,516	0,516	0,516
3.	Тепловая нагрузка потребителей, Гкал/ч	0,325	0,325	0,325	0,325	0,325	0,325	0,325	0,325	0,325
4.	Отпуск теплоэнергии с коллекторов, Гкал/год	945,1	945,0	942,2	942,2	939,4	939,4	931,1	925,6	917,3
5.	Топливо (газ), тыс.м ³ /год	148,00	148,00	148,00	148,00	147,00	147,00	146,00	145,00	144,00
6.	Сокращение расходов на топливо, тыс.руб	-	0	0	0	5	5	10	15	20
7.	Отношение текущих расходов теплоснаб- жающей организации к базовому периоду актуализации, %	100	100	100	100	99	99	99	98	97
8.	Тариф на тепловую энергию, руб./Гкал	5106,77	5106,77	5106,77	5106,77	5106,77	5106,77	5557,22	5557,22	5557,22

14.2 Тарифно-балансовые расчетные модели теплоснабжения потребителей по каждой единой теплоснабжающей организации

Показатели тарифно-балансовой модели по каждой единой теплоснабжающей организации приведены в таблице 2.68.

Таблица 2.68 – Показатели тарифно-балансовой модели по каждой единой теплоснабжающей организации

№ п/п	Показатель	2023	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039- 2043
1.	Индексы-дефляторы МЭР	104,3	104,3	104,3	104,3	104,3	104,3	113,5	113,5	113,5
2.	Установленная тепловая мощность, Гкал/ч	0,516	0,516	0,516	0,516	0,516	0,516	0,516	0,516	0,516
3.	Тепловая нагрузка потребителей, Гкал/ч	0,325	0,325	0,325	0,325	0,325	0,325	0,325	0,325	0,325
4.	Отпуск теплоэнергии с коллекторов, Гкал/год	945,1	945,0	942,2	942,2	939,4	939,4	931,1	925,6	917,3
5.	Топливо (газ), тыс.м ³ /год	148,00	148,00	148,00	148,00	147,00	147,00	146,00	145,00	144,00
6.	Сокращение расходов на топливо, тыс.руб	-	0	0	0	5	5	10	15	20
7.	Отношение текущих расходов теплоснаб-жающей организации к базовому периоду актуализации, %	100	100	100	100	99	99	99	98	97
8.	Тариф на тепловую энергию, руб./Гкал	5106,77	5106,77	5106,77	5106,77	5106,77	5106,77	5557,22	5557,22	5557,22

14.3 Результаты оценки ценовых (тарифных) последствий реализации проектов схемы теплоснабжения на основании разработанных тарифно-балансовых моделей

Основные параметры формирования тарифов:

- тариф ежегодно формируется и пересматривается;
- в необходимую валовую выручку для расчета тарифа включаются экономически обоснованные эксплуатационные затраты;
- исходя из утвержденных финансовых потребностей реализации проектов схемы, в течение установленного срока возврата инвестиций в тариф включается инвестиционная составляющая, складывающаяся из амортизации по объектам инвестирования и расходов на финансирование реализации проектов схемы из прибыли с учетом возникающих налогов;
- тарифный сценарий обеспечивает финансовые потребности планируемых проектов схемы и необходимость выполнения финансовых обязательств перед финансирующими организациями;
- для обеспечения доступности услуг потребителям должны быть выработаны меры сглаживания роста тарифов при инвестировании.

Таким образом, в рамках этой финансовой модели: тариф ежегодно пересматривается или индексируется, но исходя из утвержденной инвестиционной программы; определен долгосрочный период, в течение которого в тариф включается обоснованная инвестиционная составляющая,

обеспечивающая финансовые потребности инвестиционной программы. При этом тарифное регулирование становится более предсказуемым и обеспечивает финансирование производственной деятельности организации коммунального комплекса по поставкам тепловой энергии и инвестиционной деятельности в рамках утвержденной инвестиционной программы.

В большинстве случаев источниками финансирования инвестиционной программы в коммунальной сфере являются заемные средства (не менее 80% инвестиционных затрат), привлекаемые на срок 5-6 лет; тарифное сглаживание может быть обеспечено также постепенным «нагружением» тарифа инвестиционной составляющей, которая обеспечивает возврат и обслуживание привлеченных займов; при этом должен быть предусмотрен и согласован с банком индивидуальный график возврата займов неравными долями; это непривычно для банков, но достижимо и является самой эффективной и доступной мерой по сглаживанию тарифных последствий инвестирования; такая схема позволяет осуществить капитальные вложения (реконструкцию) в сжатые сроки, растянуть возврат инвестиций на 6-8 лет и обеспечить рост тарифной нагрузки на потребителей ежегодно на уровне 15-22% (после этого срока тариф снижается на величину порядка 20-30%).

ГЛАВА 15. Реестр единых теплоснабжающих организаций

15.1 Реестр систем теплоснабжения, содержащий перечень теплоснабжающих организаций, действующих в каждой системе теплоснабжения, расположенных в границах поселения, городского округа, города федерального значения

Таблица 2.69 — Реестр систем теплоснабжения, содержащий перечень теплоснабжающих организаций

Системы теплоснабжения	Наименование	ИНН	Юридический / почтовый адрес
Сельского населенного пункта с. Колташево	ООО «Уют»	4510026846	641334, Курганская область, Кетовский р-н, п. Светлые поляны, мкр 1-й, д. 18

По сравнению со Схемой теплоснабжения 2023 г. изменения в реестре систем теплоснабжения отсутствуют.

15.2 Реестр единых теплоснабжающих организаций, содержащий перечень систем теплоснабжения, входящих в состав единой теплоснабжающей организации

Таблица 2.70 – Реестр единых теплоснабжающих организаций, содержащий перечень систем теплоснабжения

Наименование	ИНН	Юридический / почтовый адрес	Системы теплоснабжения
ООО «Уют»	4510026846	641334, Курганская область, Кетовский р-н, п. Светлые поляны, мкр 1-й, д. 18	Сельского населенного пункта с. Колташево

По сравнению со Схемой теплоснабжения 2023 г. изменения в реестре теплоснабжающей организации отсутствуют.

15.3 Основания, в том числе критерии, в соответствии с которыми теплоснабжающей организации присвоен статус единой теплоснабжающей организации

Критериями определения единой теплоснабжающей организации являются:

- владение на праве собственности или ином законном основании источниками тепловой энергии с наибольшей рабочей тепловой мощностью и (или) тепловыми сетями с наибольшей рабочей тепловой мощностью и (или) тепловыми сетями с наибольшей емкостью в границах зоны деятельности единой теплоснабжающей организации;
 - размер собственного капитала;
- способность в лучшей мере обеспечить надежность теплоснабжения в соответствующей системе теплоснабжения.

Теплоснабжающая организация ООО «Уют» удовлетворяет двум последним вышеперечисленным критериям.

15.4 Заявки теплоснабжающих организаций, поданные в рамках разработки проекта схемы теплоснабжения (при их наличии), на присвоение статуса единой теплоснабжающей организации

Статус единой теплоснабжающей организации теплоснабжающей организации решением федерального органа исполнительной власти (в отношении городов с населением 500 тысяч человек и более) или органа местного самоуправления при утверждении схемы теплоснабжения поселения, городского округа.

В случае, если на территории поселения, городского округа существуют несколько систем теплоснабжения, уполномоченные органы вправе:

- определить единую теплоснабжающую организацию в каждой из систем теплоснабжения, расположенных в границах поселения, городского округа;
- определить на несколько систем теплоснабжения единую теплоснабжающую организацию.

Для присвоения организации статуса единой теплоснабжающей организации на территории поселения, городского округа лица, владеющие на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями, подают в уполномоченный орган в течение 1 месяца с даты опубликования сообщения, заявку на присвоение организации статуса единой теплоснабжающей организации с указанием зоны ее деятельности. К заявке прилагается бухгалтерская отчетность, составленная на последнюю отчетную дату перед подачей заявки, с отметкой налогового органа о ее принятии.

В случае если в отношении одной зоны деятельности единой теплоснабжающей организации подана 1 заявка от лица, владеющего на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в соответствующей зоне деятельности единой теплоснабжающей организации, то статус единой теплоснабжающей организации присва-ивается указанному лицу. В случае если в отношении одной зоны деятельности единой теплоснабжающей организации подано несколько заявок от лиц, владеющих на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в соответствующей зоне деятельности единой теплоснабжающей организации.

Заявки теплоснабжающих организаций, поданные в рамках разработки проекта схемы теплоснабжения, на присвоение статуса единой теплоснабжающей организации, за 2021 - 2023 годы не зафиксированы.

15.5 Описание границ зон деятельности единой теплоснабжающей организации (организации)

Зона действия единой теплоснабжающей организации ООО «Уют» охватывает общественноделовую зону населенного пункта, территория которой расположена между ул. Школьная, ул. Центральная и пер. Западный, являющаяся частью кадастрового квартала 45:08:031003. К системе теплоснабжения подключены здания дома культуры, школы, детского сада и сельсовета. Наиболее удаленный потребитель — здание детского сада.

Зона действия источника тепловой энергии – центральной котельной с. Колташево совпадает с зоной действия системы теплоснабжения.

Границы зоны деятельности единой теплоснабжающей организации могут быть изменены в следующих случаях:

- подключение к системе теплоснабжения новых теплопотребляющих установок, источников тепловой энергии или разделение систем теплоснабжения;
 - технологическое объединение или разделение систем теплоснабжения.

ГЛАВА 16. Реестр мероприятий схемы теплоснабжения

Глава разработана с учетом отсутствия ценовых зон теплоснабжения.

16.1 Перечень мероприятий по строительству, реконструкции или техническому перевооружению и (или) модернизации источников тепловой энергии

До конца расчетного периода запланированы мероприятия по строительству, реконструкции или техническому перевооружению источников тепловой энергии, приведенные в таблице 2.71.

Таблица 2.71 — Перечень мероприятий по строительству, реконструкции или техническому перевооружению источников тепловой энергии

№ пп (уни-		Источ-	По	требно	сть в фи	нансовн	ых средо	ствах, ті	ыс. рубл	ей
кальный номер)	Наименование мероприятия	ник фи- нансиро- вания	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039- 2043
CT.345-24- 001-K	Замена котлов с. Колташево	внебюд- жетные средства			300	300				
CT.345- 24-001-K	Замена сетевых насосов	внебюд- жетные средства		100						
	Итого			100	300	300	0	0	0	0

16.2 Перечень мероприятий по строительству, реконструкции и техническому перевооружению тепловых сетей и сооружений на них

До конца расчетного периода запланированы мероприятия по строительству, реконструкции и техническому перевооружению тепловых сетей и сооружений на них, приведенные в таблице 2.72.

Таблица 2.72 – Перечень мероприятий по строительству, реконструкции и техническому перевооружению тепловых сетей и сооружений на них

№ пп		Источник	По	требнос	ть в фи	нансовь	ых средо	ствах, ті	ыс. рубл	ей
(уни- кальный номер)	Наименование мероприятия	финанси-	2024	2025	2026	2027	2028	2029- 2033	2034- 2038	2039- 2043
CT.345- 24-001- TC	Реконструкция тепловых сетей центральной котельной (162 п.м.) с. Колташево	внебюд- жетные средства								400,7 85

16.3 Перечень мероприятий, обеспечивающих перевод от открытых систем теплоснабжения (горячего водоснабжения), отдельных участков таких систем на закрытые системы горячего водоснабжения

До конца расчетного периода мероприятий, обеспечивающих переход от открытых систем теплоснабжения (горячего водоснабжения) на закрытые системы горячего водоснабжения, не запланировано.

ГЛАВА 17. Замечания и предложения к проекту схемы теплоснабжения

17.1 Перечень всех замечаний и предложений, поступивших при разработке, утверждении и актуализации схемы теплоснабжения

Отдел ЖКХ Комитета по организации ЖКХ и КС Администрации Кетовского муниципального округа:

- 1. Включить в Схему раздел «О мерах по обеспечению надежности теплоснабжения и бесперебойной работы систем теплоснабжения».
- 2. Учесть, что по итогам совещания по вопросам прохождения осенне-зимнего отопительного периода, состоявшегося 29 декабря 2021 года дано поручение Президента Российской Федерации «Обеспечить включение в обязательном порядке в схемы теплоснабжения при проведении их ежегодной актуализации сценариев развития аварий в системах теплоснабжения с моделированием гидравлических режимов работы таких систем, в том числе при отказе элементов тепловых сетей и при аварийных режимах работы систем теплоснабжения, связанных с прекращением подачи тепловой энергии» (подпункт «б» пункта 2 перечня поручений).
- 3. Учесть исключение сельсоветов и преобразование Кетовского района в Кетовский муниципальный округ.

17.2 Ответы разработчиков проекта схемы теплоснабжения на замечания и предложения

Предложения, поступившие от Отдел ЖКХ Комитета по организации ЖКХ и КС Администрации Кетовского муниципального округа, рассмотрены. Изменения и дополнения внесены по тексту утверждаемой части Схемы, обосновывающих материалов и приложения, выполненного в виде графического изображения схем тепловых сетей.

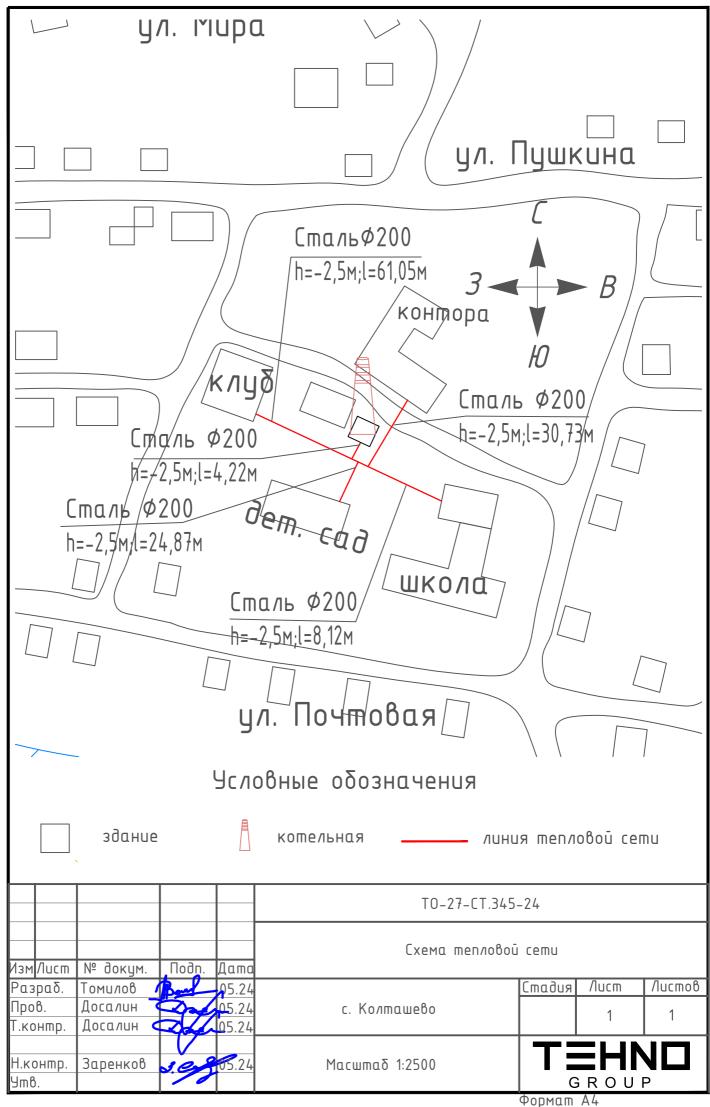
17.3 Перечень учтенных замечаний и предложений, а также реестр изменений, внесенных в разделы схемы теплоснабжения и главы обосновывающих материалов к схеме теплоснабжения

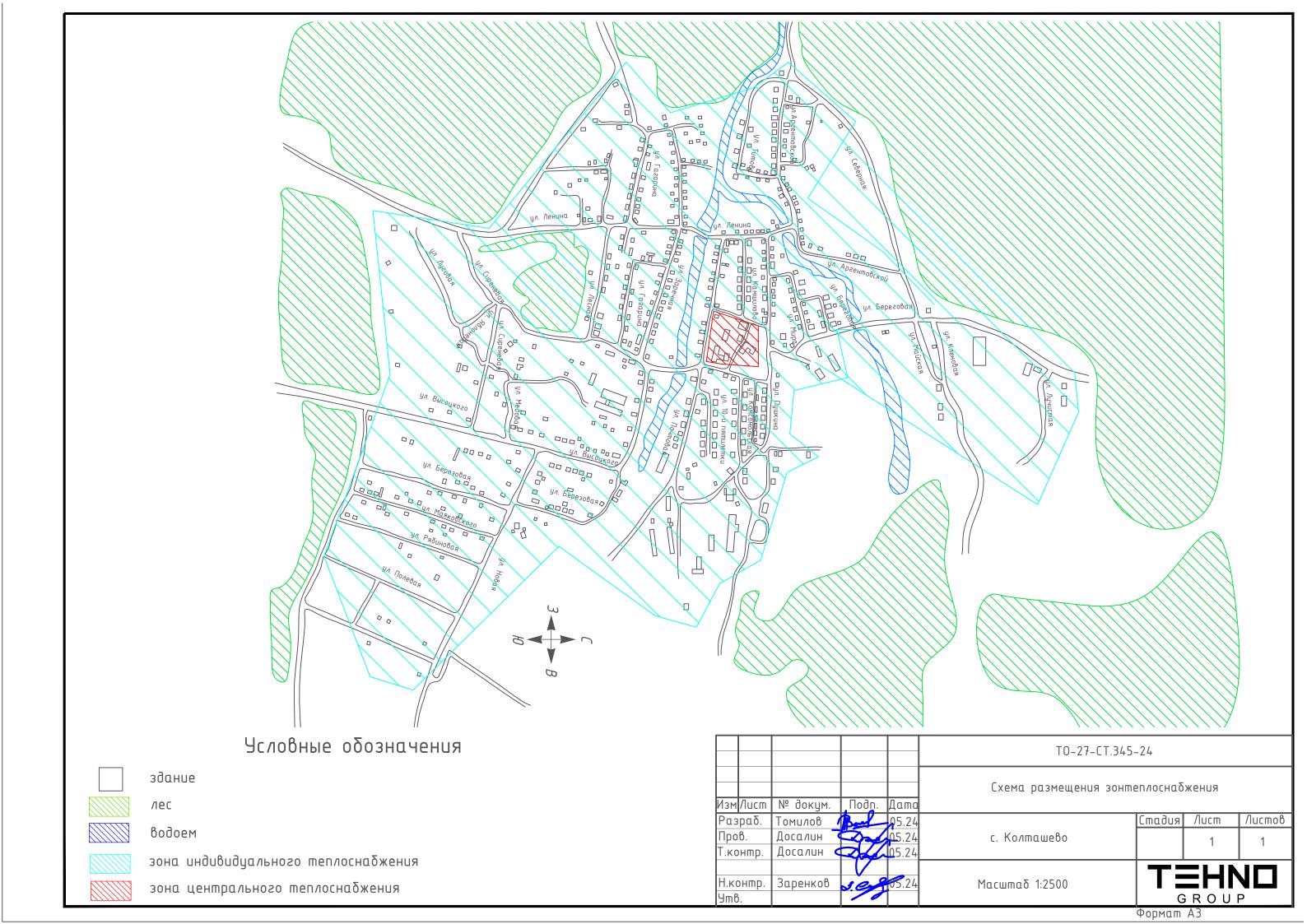
Предложения, поступившие от администрации Кетовского муниципального округа и теплоснабжающей организации учтены в полном объеме: внесены численные изменения, изменения в графическую часть (приложение к Схеме теплоснабжения), а также изменены формулировки содержания пунктов.

Таблица 2.73 — Реестр изменений, внесенных в разделы схемы теплоснабжения и главы обосновывающих материалов к схеме теплоснабжения

№	Разделы схемы теплоснабжения и главы обосновывающих материалов к схеме теплоснабжения	Краткое содержание изменения
1.	Раздел 1.	Актуализированы показатели спроса на тепловую энергию (мощность) и теплоноситель в установленных границах территории поселения по котельным.
2.	Раздел 2.	Изменены существующие и перспективные балансы тепловой мощности всех источников тепловой энергии и тепловой нагрузки потребителей.
3.	Раздел 3.	Актуализированы существующие и перспективные балансы теплоно-

	Разделы схемы теп-	
	лоснабжения и гла-	
№	вы обосновывающих	Краткое содержание изменения
ПП		краткое содержание изменения
	материалов к схеме	
	теплоснабжения	
4	D 4	сителя для некоторых источников тепловой энергии.
4.	Раздел 4.	Разработан раздел, посвященный основным положениям мастер-плана
	D 7	развития систем теплоснабжения поселения
5.	Раздел 7.	Разработан раздел, содержащий предложения по переводу открытых
		систем теплоснабжения (горячего водо-снабжения), отдельных участ-
	_	ков таких систем на закрытые системы горячего водоснабжения.
6.	Раздел 8.	Изменены перспективные топливные балансы по источникам тепло-
		снабжения.
7.	Раздел 9.	Изменено наименование п. 9.4.
8.	Раздел 13	Разработан раздел, посвященный синхронизации схемы теплоснабже-
		ния со схемой газоснабжения и газификации субъекта Российской Фе-
		дерации и (или) поселения, схемой и программой развития электро-
		энергетических систем России, а также со схемой водоснабжения и во-
		доотведения поселения, городского округа, города федерального зна-
		чения
9.	Раздел 14.	Разработаны индикаторы развития систем теплоснабжения поселения.
10.	Раздел 15.	Обновлены сведения об установлении долгосрочных тарифов.
11.	Раздел 16	Разработан раздел, включающий меры по обеспечению надежности
		теплоснабжения и бесперебойной работы систем теплоснабжения
12.	ГЛАВА 1.	Внесены изменения в отношении оборудования котельных, потерь теп-
		ловой энергии при ее передаче по тепловым сетям, значений тепловой
		нагрузки на коллекторах, резервов и дефицитов тепловой мощности
		нетто, количества используемого топлива источниками, теплоснабжа-
		ющих организаций, тарифов на тепловую энергию.
13.	ГЛАВА 2.	Изменены величины перспективного потребления тепловой энергии на
		цели теплоснабжения.
14.	ГЛАВА 3.	Дополнена электронная модель системы теплоснабжения поселения.
15.	ГЛАВА 4.	Скорректированы перспективные балансы тепловой мощности источ-
		ников тепловой энергии и тепловой нагрузки потребителей.
16.	ГЛАВА 5.	Разработана глава, посвященная мастер-плану развития систем тепло-
		снабжения поселения.
17.	ГЛАВА 6.	Изменено наименование п. 6.2.
18.	ГЛАВА 9.	Изменено наименование главы и ее пунктов.
19.	ГЛАВА 10.	Актуализированы существующие и перспективные топливные балансы
		по источникам теплоснабжения.
20.	ГЛАВА 11.	Уточнены данные по оценке надежности.
		Обеспечено включение в обязательном порядке пунктов в Схему теп-
		лоснабжения при проведении ее ежегодной актуализации сценариев
		развития аварий в системах теплоснабжения с моделированием гидрав-
		развития аварии в системах теплоснаожения с моделированием гидрав-


№ пп	Разделы схемы теплоснабжения и гла-	
	вы обосновывающих	Краткое содержание изменения
	материалов к схеме	
	теплоснабжения	
		лических режимов работы таких систем, в том числе при отказе эле-
		ментов тепловых сетей и при аварийных режимах работы систем теп-
		лоснабжения, связанных с прекращением подачи тепловой энергии
21.	ГЛАВА 12.	Скорректированы объемы инвестиций в строительство, реконструкцию
		и техническое перевооружение.
22.	ГЛАВА 13.	Разработаны индикаторы развития систем теплоснабжения поселения.
23.	ГЛАВА 14.	Изменена с учетом корректировки установленной мощности котель-
		ных, потребления топлива и установленных долгосрочных параметров
		тарифов.
24.	ГЛАВА 15.	Разработан, раздел, включающий реестр единых теплоснабжающих ор-
		ганизаций
25.	ГЛАВА 16.	Разработан раздел, содержащий реестр мероприятий схемы теплоснаб-
		жения
26.	ГЛАВА 17.	Разработана с учетом предложений и замечаний к проекту Схемы теп-
		лоснабжения от администрации Кетовского муниципального округа и
		теплоснабжающей организации.
27.	ГЛАВА 18.	Разработана с учетом сводного тома изменений.


ГЛАВА 18. Сводный том изменений, выполненных в доработанной и (или) актуализированной схеме теплоснабжения

В актуализированной схеме теплоснабжения внесены следующие изменения:

- в объемы потребления тепловой энергии, мощности и теплоносителя;
- изменены существующие и перспективные балансы тепловой мощности;
- изменены перспективные топливные балансы по источникам теплоснабжения
- обновлены данные по длине ремонтируемых тепловых сетей.
- дополнены индикаторы развития систем теплоснабжения поселения.
- внесены изменения по тарифам;
- скорректированы тарифно-балансовые расчетные модели;
- включены меры по обеспечению надежности теплоснабжения и бесперебойной работы систем теплоснабжения;
- включены сценарии развития аварий в системах теплоснабжения с моделированием гидравлических режимов работы таких систем, в том числе при отказе элементов тепловых сетей и при аварийных режимах работы систем теплоснабжения, связанных с прекращением подачи тепловой энергии;
- скорректированы объемы инвестиций в строительство, реконструкцию и техническое перевооружение котельных и тепловых сетей.

Приложение. Схемы теплоснабжения

